Part Number Hot Search : 
GE33C AAP152 MMBD353 CX4005NL A1104E AD8031AR H21L1 00402
Product Description
Full Text Search
 

To Download SAA7111AH Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 INTEGRATED CIRCUITS
DATA SHEET
SAA7111A Enhanced Video Input Processor (EVIP)
Product specification Supersedes data of 1997 May 26 File under Integrated Circuits, IC22 1998 May 15
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
CONTENTS 1 2 3 4 5 6 7 8 8.1 8.2 8.2.1 8.2.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 8.13.1 9 9.1 9.2 10 11 12 13 14 14.1 14.2 15 16 16.1 17 17.1 17.2 FEATURES APPLICATIONS GENERAL DESCRIPTION QUICK REFERENCE DATA ORDERING INFORMATION BLOCK DIAGRAM PINNING FUNCTIONAL DESCRIPTION Analog input processing Analog control circuits Clamping Gain control Chrominance processing Luminance processing RGB matrix VBI-data bypass VPO-bus (digital outputs) Reference signals HREF, VREF and CREF Synchronization Clock generation circuit Power-on reset and CE input RTCO output The Line-21 text slicer Suggestions for I2C-bus interface of the display software reading line-21 data BOUNDARY-SCAN TEST Initialization of boundary-scan circuit Device identification codes GAIN CHARTS LIMITING VALUES CHARACTERISTICS TIMING DIAGRAMS CLOCK SYSTEM Clock generation circuit Power-on control OUTPUT FORMATS APPLICATION INFORMATION Layout hints I2C-BUS DESCRIPTION I2C-bus format I2C-bus detail 17.2.1 17.2.2 17.2.3 17.2.4 17.2.5 17.2.6 17.2.7 17.2.8 17.2.9 17.2.10 17.2.11 17.2.12 17.2.13 17.2.14 17.2.15 17.2.16 17.2.17 17.2.18 17.2.19 17.2.20 17.2.21 17.2.22 17.2.23 17.2.24 17.2.25 18 18.1 18.2 18.3 18.4 19 20 21 21.1 21.2 21.3 21.4 22 23 24
SAA7111A
Subaddress 00 Subaddress 02 Subaddress 03 Subaddress 04 Subaddress 05 Subaddress 06 Subaddress 07 Subaddress 08 Subaddress 09 Subaddress 0A Subaddress 0B Subaddress 0C Subaddress 0D Subaddress 0E Subaddress 10 Subaddress 11 Subaddress 12 Subaddress 13 Subaddress 15 Subaddress 16 Subaddress 17 Subaddress 1A (read-only register) Subaddress 1B (read-only register) Subaddress 1C (read-only register) Subaddress 1F (read-only register) FILTER CURVES Anti-alias filter curve TUF-block filter curve Luminance filter curves Chrominance filter curves I2C-BUS START SET-UP PACKAGE OUTLINES SOLDERING Introduction Reflow soldering Wave soldering Repairing soldered joints DEFINITIONS LIFE SUPPORT APPLICATIONS PURCHASE OF PHILIPS I2C COMPONENTS
1998 May 15
2
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
1 FEATURES
SAA7111A
* Four analog inputs, internal analog source selectors, e.g. 4 x CVBS or 2 x Y/C or (1 x Y/C and 2 x CVBS) * Two analog preprocessing channels * Fully programmable static gain for the main channels or automatic gain control for the selected CVBS or Y/C channel * Switchable white peak control * Two built-in analog anti-aliasing filters * Two 8-bit video CMOS analog-to-digital converters * On-chip clock generator * Line-locked system clock frequencies * Digital PLL for horizontal-sync processing and clock generation * Requires only one crystal (24.576 MHz) for all standards * Horizontal and vertical sync detection * Automatic detection of 50 and 60 Hz field frequency, and automatic switching between PAL and NTSC standards * Luminance and chrominance signal processing for PAL BGHI, PAL N, PAL M, NTSC M, NTSC N, NTSC 4.43, NTSC-Japan and SECAM * User programmable luminance peaking or aperture correction * Cross-colour reduction for NTSC by chrominance comb filtering * PAL delay line for correcting PAL phase errors * Real time status information output (RTCO) * Brightness Contrast Saturation (BCS) control on-chip * The YUV (CCIR-601) bus supports a data rate of: - 864 x fH = 13.5 MHz for 625 line sources - 858 x fH = 13.5 MHz for 525 line sources. * Data output streams for 16, 12 or 8-bit width with the following formats: - YUV 4 : 1 : 1 (12-bit) - YUV 4 : 2 : 2 (16-bit) - YUV 4 : 2 : 2 (CCIR-656) (8-bit) - RGB (5, 6, and 5) (16-bit) with dither - RGB (8, 8, and 8) (24-bit) with special application. 2 APPLICATIONS * Desktop/Notebook (PCMCIA) video * Multimedia * Digital television * Image processing * Video phone * Intercast. * Odd/even field identification by a non interlace CVBS input signal * Fix level for RGB output format during horizontal blanking * 720 active samples per line on the YUV bus * One user programmable general purpose switch on an output pin * Built-in line-21 text slicer * A 27 MHz Vertical Blanking Interval (VBI) data bypass programmable by I2C-bus for INTERCAST applications * Power-on control * Two via I2C-bus switchable outputs for the digitized CVBS or Y/C input signals AD1 (7 to 0) and AD2 (7 to 0) * Chip enable function (reset for the clock generator and power save mode up from chip version 3) * Compatible with memory-based features (line-locked clock) * Boundary scan test circuit complies with the `IEEE Std. 1149.1 - 1990' (ID-Code = 0 F111 02 B) * I2C-bus controlled (full read-back ability by an external controller) * Low power (<0.5 W), low voltage (3.3 V), small package (LQFP64) * 5 V tolerant digital I/O ports.
1998 May 15
3
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
3 GENERAL DESCRIPTION
SAA7111A
The Enhanced Video Input Processor (EVIP) is a combination of a two-channel analog preprocessing circuit including source selection, anti-aliasing filter and ADC, an automatic clamp and gain control, a Clock Generation Circuit (CGC), a digital multi-standard decoder (PAL BGHI, PAL M, PAL N, NTSC M, NTSC-Japan NTSC N and SECAM), a brightness/contrast/saturation control circuit, a colour space matrix (see Fig.1) and a 27 MHz VBI-data bypass.
The pure 3.3 V CMOS circuit SAA7111A, analog front-end and digital video decoder, is a highly integrated circuit for desktop video applications. The decoder is based on the principle of line-locked clock decoding and is able to decode the colour of PAL, SECAM and NTSC signals into CCIR-601 compatible colour component values. The SAA7111A accepts as analog inputs CVBS or S-video (Y/C) from TV or VTR sources. The circuit is I2C-bus controlled. The SAA7111A then supports several text features as Line 21 data slicing and a high-speed VBI data bypass for Intercast.
4
QUICK REFERENCE DATA SYMBOL PARAMETER digital supply voltage analog supply voltage operating ambient temperature analog and digital power 3.0 3.1 0 - MIN. 3.3 3.3 25 0.5 TYP. 3.6 3.5 70 - MAX. V V C W UNIT
VDDD VDDA Tamb PA+D 5
ORDERING INFORMATION TYPE NUMBER PACKAGE NAME LQFP64 QFP64 DESCRIPTION plastic low profile quad flat package; 64 leads; body 10 x 10 x 1.4 mm plastic quad flat package; 64 leads (lead length 1.6 mm); body 14 x 14 x 2.7 mm VERSION SOT314-2 SOT393-1
SAA7111AHZ SAA7111AH
1998 May 15
4
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
6 BLOCK DIAGRAM
SAA7111A
handbook, full pagewidth
VBI DATA BYPASS UPSAMPLING FILTER
BYPASS AOUT AI11 AI12 14 12 10 ANALOG PROCESSING AND ANALOG-TODIGITAL CONVERSION AD2 n.c. VSSS 64 13 CON Y I2C-BUS CONTROL I2C-BUS INTERFACE AD1 CHROMINANCE CIRCUIT AND BRIGHTNESS C/CVBS CONTRAST SATURATION CONTROL YUV-to-RGB CONVERSION AND OUTPUT FORMATTER 34 to 39 42 to 51 VPO (0 : 15)
AI21 AI22
8 6
UV Y
52 31
FEI HREF
53 61 62 63
ANALOG PROCESSING CONTROL n.c. 10
GPSW IICSA SDA SCL
LUMINANCE CIRCUIT Y/CVBS
Y V SSA1-2 V DDA1-2 9,5 11,7
SAA7111A
CLOCKS
TDI TCK TMS TRST TDO
3 59 4 58 2
TEST CONTROL BLOCK FOR BOUNDARY SCAN TEST AND SCAN TEST
54 CLOCK GENERATION CIRCUIT POWER-ON CONTROL 55 21 22 20 23
XTAL XTALI LLC2 CREF LLC RES
SYNCHRONIZATION CIRCUIT LFCO
57,41,33,25,18 V DDD1-5
56,40,32,26,19
30 VS
27
17
29
28
60 V
15 V
16
24
MGG061
VSSD1-5
HS VREF RTS0 RTS1 RTCO
DDA0
SSA0
CE
Fig.1 Block diagram.
1998 May 15
5
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
7 PINNING PIN SYMBOL (L)QFP64 n.c. TDO TDI TMS VSSA2 AI22 VDDA2 AI21 VSSA1 AI12 VDDA1 AI11 VSSS AOUT VDDA0 VSSA0 VREF VDDD5 VSSD5 LLC LLC2 CREF 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 - O I I P I P I P I P I P O P P O P P O O O Do not connect. Test data output for boundary scan test; note 1. Test data input for boundary scan test; note 1. Test mode select input for boundary scan test or scan test; note 1. Ground for analog supply voltage channel 2. Analog input 22. Positive supply voltage for analog channel 2 (+3.3 V). Analog input 21. Ground for analog supply voltage channel 1. Analog input 12. Positive supply voltage for analog channel 1 (+3.3 V). Analog input 11. Substrate ground connection. Analog test output; for testing the analog input channels. I/O/P DESCRIPTION
SAA7111A
Positive supply voltage for internal Clock Generator Circuit (CGC) (+3.3 V). Ground for internal CGC. Vertical reference output signal (I2C-bit COMPO = 0) or inverse composite blanking signal (I2C-bit COMPO = 1) (enabled via I2C-bus bit OEHV). Digital supply voltage 5 (+3.3 V). Ground for digital supply voltage 5. Line-locked system clock output (27 MHz). Line-locked clock 12 output (13.5 MHz). Clock reference output: this is a clock qualifier signal distributed by the internal CGC for a data rate of LLC2. Using CREF all interfaces on the VPO bus are able to generate a bus timing with identical phase. If CCIR 656 format is selected (OFTS0 = 1 and OFTS1 = 1) an inverse composite blanking signal (pixel qualifier) is provided on this pin. Reset output (active LOW); sets the device into a defined state. All data outputs are in high impedance state. The I2C-bus is reset (waiting for start condition). Chip enable; connection to ground forces a reset, up from version 3 power save function additionally available. Digital supply voltage input 4 (+3.3 V). Ground for digital supply voltage input 4. Horizontal sync output signal (programmable); the positions of the positive and negative slopes are programmable in 8 LLC increments over a complete line (equals 64 s) via I2C-bus bytes HSB and HSS. Fine position adjustment in 2 LLC increments can be performed via I2C-bus bits HDEL1 and HDEL0. Two functions output; controlled by I2C-bus bit RTSE1. RTSE1 = 0: PAL line identifier (LOW = PAL line); indicates the inverted and non-inverted R - Y component for PAL signals. RTSE1 = 1: H-PLL locked indicator; a high state indicates that the internal horizontal PLL has locked. 6
RES CE VDDD4 VSSD4 HS
23 24 25 26 27
O I P P O
RTS1
28
O
1998 May 15
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
PIN SYMBOL (L)QFP64 RTS0 29 O Two functions output; controlled by I2C-bus bit RTSE0. RTSE0 = 0: odd/even field identification (HIGH = odd field). RTSE0 = 1: vertical locked indicator; a HIGH state indicates that the internal Vertical Noise Limiter (VNL) has locked. Vertical sync signal (enabled via I2C-bus bit OEHV); this signal indicates the vertical sync with respect to the YUV output. The HIGH period of this signal is approximately six lines if the VNL function is active. The positive slope contains the phase information for a deflection controller. Horizontal reference output signal (enabled via I2C-bus bit OEHV); this signal is used to indicate data on the digital YUV bus. The positive slope marks the beginning of a new active line. The HIGH period of HREF is 720 Y samples long. HREF can be used to synchronize data multiplexer/demultiplexer. HREF is also present during the vertical blanking interval. Ground for digital supply voltage input 3. Digital supply voltage 3 (+3.3 V). Digital VPO-bus (Video Port Out) signal; higher bits of the 16-bit VPO-bus or the 16-bit RGB-bus output signal. The output data rate, the format and multiplexing scheme of the VPO-bus are controlled via I2C-bus bits OFTS0 and OFTS1. If I2C-bus bit VIPB = 1 the six MSBs of the digitized input signal are connected to these outputs, configured by the I2C-bus `MODE' bits (see Figs 33 to 40): LUMA VPO15 to VPO8, CHROMA VPO7 to VPO0. Ground for digital supply voltage input 2. Digital supply voltage 2 (+3.3 V). Digital VPO-bus output signal; lower bits of the 16-bit YUV-bus or the 16-bit RGB-bus output signal. The output data rate, the format and multiplexing schema of the VPO-bus are controlled via I2C-bus bits OFTS0 and OFTS1. If I2C-bus bit VIPB = 1 the digitized input signal are connected to these outputs, configured by the I2C-bus `MODE' bits (see Figs 33 to 40): LUMA VPO15 to VPO8, CHROMA VPO7 to VPO0. Fast enable input signal (active LOW); this signal is used to control fast switching on the digital YUV-bus. A HIGH at this input forces the IC to set its Y and UV outputs to the high impedance state. General purpose switch output; the state of this signal is set via I2C-bus control and the levels are TTL compatible. Second terminal of crystal oscillator; not connected if external clock signal is used. Input terminal for 24.576 MHz crystal oscillator or connection of external oscillator with CMOS compatible square wave clock signal. Ground for digital supply voltage input 1. Digital supply voltage input 1 (+3.3 V). Test reset input not (active LOW), for boundary scan test; notes 1, 2 and 3. Test clock for boundary scan test; note 1. Real time control output: contains information about actual system clock frequency, subcarrier frequency and phase and PAL sequence. I/O/P DESCRIPTION
VS
30
O
HREF
31
O
VSSD3 VDDD3 VPO (15 to 10)
32 33 34 to 39
P P O
VSSD2 VDDD2 VPO (9 to 0)
40 41 42 to 51
P P O
FEI
52
I
GPSW XTAL XTALI VSSD1 VDDD1 TRST TCK RTCO
53 54 55 56 57 58 59 60
O O I P P I I O
1998 May 15
7
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
PIN SYMBOL (L)QFP64 IICSA 61 I I2C-bus slave address select; 0 = 48H for write, 49H for read 1 = 4AH for write, 4BH for read. Serial data input/output (I2C-bus). Serial clock input/output (I2C-bus). Not connect. I/O/P DESCRIPTION
SDA SCL n.c. Notes
62 63 64
I/O I/O -
1. In accordance with the `IEEE1149.1' standard the pads TCK, TDI, TMS and TRST are input pads with an internal pull-up transistor and TDO a 3-state output pad. 2. This pin provides easy initialization of BST circuit. TRST can be used to force the TAP (Test Access Port) controller to the Test-Logic-Reset state (normal operation) at once. 3. For board design without boundary scan implementation (pin compatibility with the SAA7110) connect the TRST pin to ground.
1998 May 15
8
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
VDDD1
VSSD1
RTCO
XTALI
VPO0
VPO1 50
n.c.
64
63
62
61
60
59
58
57
56
55
54
53
52
51
n.c. TDO TDI TMS VSSA2 AI22 VDDA2 AI21 VSSA1
1 2 3 4 5 6 7 8
49 48 VPO3 47 VPO4 46 VPO5 45 VPO6 44 VPO7 43 VPO8 42 VPO9 41 VDDD2 40 VSSD2 39 VPO10 38 VPO11 37 VPO12 36 VPO13 35 VPO14 34 VPO15 33 VDDD3 VSSD3 32
SAA7111A
9
AI12 10 VDDA1 11 AI11 12 VSSS 13 AOUT 14 VDDA0 15 VSSA0 16 VREF 17 VDDD5 18 VSSD5 19 LLC 20 LLC2 21 CREF 22 RES 23 CE 24 VDDD4 25 VSSD4 26 HS 27 RTS1 28 RTS0 29 VS 30 HREF 31
VPO2
IICSA
TRST
XTAL
handbook, full pagewidth
GPSW
SDA
TCK
SCL
FEI
MGG060
Fig.2 Pin configuration (LQFP64/QFP64).
1998 May 15
9
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
8 8.1 FUNCTIONAL DESCRIPTION Analog input processing
SAA7111A
The SAA7111A offers four analog signal inputs, two analog main channels with source switch, clamp circuit, analog amplifier, anti-alias filter and video CMOS ADC (see Fig.5). 8.2 Analog control circuits
The AGC (automatic gain control for luminance) is used to amplify a CVBS or Y signal to the required signal amplitude, matched to the ADCs input voltage range. The AGC active time is the sync bottom of the video signal.
handbook, halfpage
The anti-alias filters are adapted to the line-locked clock frequency via a filter control circuit. During the vertical blanking time, gain and clamping control are frozen. 8.2.1 CLAMPING
analog input level maximum
controlled ADC input level
+4.5 dB 0 dB (1 V(p-p) 27/47 ) -7.5 dB
range tbf
0 dB
The clamp control circuit controls the correct clamping of the analog input signals. The coupling capacitor is also used to store and filter the clamping voltage. An internal digital clamp comparator generates the information with respect to clamp-up or clamp-down. The clamping levels for the two ADC channels are fixed for luminance (60) and chrominance (128). Clamping time in normal use is set with the HCL pulse at the back porch of the video signal.
minimum
MGG063
Fig.4 Automatic gain range.
8.3
Chrominance processing
handbook, halfpage
TV line analog line blanking
255
GAIN 60 1
CLAMP
The 8-bit chrominance signal is fed to the multiplication inputs of a quadrature demodulator, where two subcarrier signals from the local oscillator DTO1 are applied (0 and 90 phase relationship to the demodulator axis). The frequency is dependent on the present colour standard. The output signals of the multipliers are low-pass filtered (four programmable characteristics) to achieve the desired bandwidth for the colour difference signals (PAL and NTSC) or the 0 and 90 FM-signals (SECAM). The colour difference signals are fed to the Brightness/Contrast/Saturation block (BCS), which includes the following five functions: * AGC (Automatic Gain Control for chrominance PAL and NTSC) * Chrominance amplitude matching (different gain factors for R - Y and B - Y to achieve CCIR-601 levels Cr and Cb for all standards) * Chrominance saturation control * Luminance contrast and brightness * Limiting YUV to the values 1 (min.) and 254 (max.) to fulfil CCIR-601 requirements.
HCL HSY
MGL065
Fig.3
Analog line with clamp (HCL) and gain range (HSY).
8.2.2
GAIN CONTROL
Signal (white) peak control limits the gain at signal overshoots. The flow charts (see Figs 13 and 14) show more details of the AGC. The influence of supply voltage variation within the specified range is automatically eliminated by clamp and automatic gain control. The gain control circuit receives (via the I2C-bus) the static gain levels for the two analog amplifiers or controls one of these amplifiers automatically via a built-in automatic gain control (AGC) as part of the Analog Input Control (AICO). 1998 May 15 10
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
The SECAM-processing contains the following blocks: * Baseband `bell' filters to reconstruct the amplitude and phase equalized 0 and 90 FM-signals * Phase demodulator and differentiator (FM-demodulation) * De-emphasis filter to compensate the pre-emphasised input signal, including frequency offset compensation (DB or DR white carrier values are subtracted from the signal, controlled by the SECAM-switch signal). The burst processing block provides the feedback loop of the chroma PLL and contains; * Burst gate accumulator * Colour identification and killer * Comparison nominal/actual burst amplitude (PAL/NTSC standards only) * Loop filter chrominance gain control (PAL/NTSC standards only) * Loop filter chrominance PLL (only active for PAL/NTSC standards) * PAL/SECAM sequence detection, H/2-switch generation * Increment generation for DTO1 with divider to generate stable subcarrier for non-standard signals. The chrominance comb filter block eliminates crosstalk between the chrominance channels in accordance with the PAL standard requirements. For NTSC colour standards the chrominance comb filter can be used to eliminate crosstalk from luminance to chrominance (cross-colour) for vertical structures. The comb filter can be switched off if desired. The embedded line delay is also used for SECAM recombination (cross-over switches). The resulting signals are fed to the variable Y-delay compensation, RGB matrix, dithering circuit and output interface, which contains the VPO output formatter and the output control logic (see Fig.6). 8.4 Luminance processing
SAA7111A
The high frequency components of the luminance signal can be peaked (control for sharpness improvement via I2C-bus) in two band-pass filters with selectable transfer characteristic. This signal is then added to the original (unpeaked) signal. A switchable amplifier achieves common DC amplification, because the DC gains are different in both chrominance trap modes. The improved luminance signal is fed to the BCS control located in the chrominance processing block (see Fig.7). 8.5 RGB matrix
Y, Cr and Cb data are converted after interpolation into RGB data in accordance with CCIR-601 recommendations. The realized matrix equations consider the digital quantization: R = Y + 1.371 Cr G = Y - 0.336 Cb - 0.698 Cr B = Y + 1.732 Cb. After dithering (noise shaping) the RGB data is fed to the output interface within the VPO-bus output formatter. 8.6 VBI-data bypass
For a 27 MHz VBI-data bypass the offset binary CVBS signal is upsampled behind the ADCs. Upsampling of the CVBS signal from 13.5 to 27 MHz is possible, because the ADCs deliver high performance at 13.5 MHz sample clock. Suppressing of the back folded CVBS frequency components after upsampling is achieved by an interpolation filter (see Fig.42). The TUF block on the digital top level performs the upsampling and interpolation for the bypassed CVBS signal (see Fig.6). For bypass details see Figs 8 to 10. 8.7 VPO-bus (digital outputs)
The 8-bit luminance signal, a digital CVBS format or a luminance format (S-VHS, HI8), is fed through a switchable prefilter. High frequency components are emphasized to compensate for loss. The following chrominance trap filter (f0 = 4.43 or 3.58 MHz centre frequency selectable) eliminates most of the colour carrier signal, therefore, it must be bypassed for S-video (S-VHS and HI8) signals.
The 16-bit VPO-bus transfers digital data from the output interfaces to a feature box or a field memory, a digital colour space converter (SAA7192 DCSC), a video enhancement and digital-to-analog processor (SAA7165 VEDA2) or a colour graphics board (Targa-format) as a graphical user interface.
1998 May 15
11
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
The output data formats are controlled via the I2C-bus bits OFTS0, OFTS1 and RGB888. Timing for the data stream formats, YUV (4 : 1 : 1) (12-bit), YUV (4 : 2 : 2) (16-bit), RGB (5, 6 and 5) (16-bit) and RGB (8, 8 and 8) (24-bit) with an LLC2 data rate, is achieved by marking each second positive rising edge of the clock LLC in conjunction with CREF (clock reference) (except RGB (8, 8 and 8), see special application in Fig.32). The higher output signals VPO15 to VPO8 in the YUV format perform the digital luminance signal. The lower output signals VPO7 to VPO0 in the YUV format are the bits of the multiplexed colour difference signals (B - Y) and (R - Y). The arrangement of the RGB (5, 6 and 5) and RGB (8, 8 and 8) data stream bits on the VPO-bus is given in Table 6. The data stream format YUV 4 : 2 : 2 (the 8 higher output signals VPO15 to VPO8) in LLC data rate fulfils the CCIR-656 standard with its own timing reference code at the start and end of each video data block. A pixel in the format tables is the time required to transfer a full set of samples. If 16-bit 4 : 2 : 2 format is selected two luminance samples are transmitted in comparison to one (B - Y) and one (R - Y) sample within a pixel. The time frames are controlled by the HREF signal. Fast enable is achieved by setting input FEI to LOW. The signal is used to control fast switching on the digital VPO-bus. HIGH on this pin forces the VPO outputs to a high-impedance state (see Figs 18 and 19). The I2C-bus bit OEYC has to be set HIGH to use this function. The digitized PAL, SECAM or NTSC signals AD1 (7 to 0) and AD2 (7 to 0) are connected directly to the VPO-bus via I2C-bus bit VIPB = 1 and MODE = 4, 5, 6 or 7. AD1 (7 to 0) VPO (15 to 8) and AD2 (7 to 0) VPO (7 to 0). The selection of the analog input channels is controlled via I2C-bus subaddress 02 MODE select. The upsampled 8-bit offset binary CVBS signal (VBI-data bypass) is multiplexed under control of the I2C-bus to the digital VPO-bus (see Fig.8). 8.8 Reference signals HREF, VREF and CREF
SAA7111A
* VREF: The VREF output delivers a vertical reference signal or an inverse composite blank signal controlled via the I2C-bus [subaddress 11, inverse composite blank (COMPO)]. Furthermore four different modes of vertical reference signals are selectable via the I2C-bus [subaddress 13, vertical reference output control (VCTR1 and VCTR0)]. The description of VREF timing and position is illustrated in Figs 15, 16, 24 and 25. * CREF: The CREF output delivers a clock/pixel qualifier signal for external interfaces to synchronize to the VPO-bus data stream. Four different modes for the clock qualifier signal are selectable via the I2C-bus [subaddress 13, clock reference output control (CCTR1 and CCTR0)]. The description of CREF timing and position is illustrated in Figs 16, 18, 20 and 21. 8.9 Synchronization
The prefiltered luminance signal is fed to the synchronization stage. Its bandwidth is reduced to 1 MHz in a low-pass filter. The sync pulses are sliced and fed to the phase detectors where they are compared with the sub-divided clock frequency. The resulting output signal is applied to the loop filter to accumulate all phase deviations. Internal signals (e. g. HCL and HSY) are generated in accordance with analog front-end requirements. The output signals HS, VS, and PLIN are locked to the timing reference, guaranteed between the input signal and the HREF signal, as further improvements to the circuit may change the total processing delay. It is therefore not recommended to use them for applications which require absolute timing accuracy on the input signals. The loop filter signal drives an oscillator to generate the line frequency control signal LFCO (see Fig.7). 8.10 Clock generation circuit
* HREF: The positive slope of the HREF output signal indicates the beginning of a new active video line. The high period is 720 luminance samples long and is also present during the vertical blanking. The description of timing and position from HREF is illustrated in Figs 15, 16, 21 and 23.
The internal CGC generates all clock signals required for the video input processor. The internal signal LFCO is a digital-to-analog converted signal provided by the horizontal PLL. It is the multiple of the line frequency 429 6.75MHz = --------- x f H 432 Internally the LFCO signal is multiplied by a factor of 2 or 4 in the PLL circuit (including phase detector, loop filtering, VCO and frequency divider) to obtain the LLC and LLC2 output clock signals. The rectangular output clocks have a 50% duty factor (see Fig.26).
1998 May 15
12
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
8.11 Power-on reset and CE input 8.13.1
SAA7111A
SUGGESTIONS FOR I2C-BUS INTERFACE OF THE
DISPLAY SOFTWARE READING LINE-21 DATA
A missing clock, insufficient digital or analog VDDA0 supply voltages (below 2.7 V) will initiate the reset sequence; all outputs are forced to 3-state. The indicator output RES is LOW for approximately 128LLC after the internal reset and can be applied to reset other circuits of the digital TV system. It is possible to force a reset by pulling the chip enable (CE) to ground. After the rising edge of CE and sufficient power supply voltage, the outputs LLC, LLC2, CREF, RTCO, RTS0, RTS1, GPSW and SDA return from 3-state to active, while HREF, VREF, HS and VS remain in 3-state and have to be activated via I2C-bus programming (see Table 5). 8.12 RTCO output
There are two methods by which the software can acquire the data: 1. Synchronous reading once per frame (or once per field); It can use either the rising edge (Line-21 Field 1) or both edges (Line-21 Field 1 or 2) of the ODD signal (pin RTSO) to initiate an I2C-bus read transfer of the three registers 1A, 1B and 1C. 2. Asynchronous reading; It can poll either the F1RDY bit (Line-21 Field 1) or both F1RDY/F2RDY bits (Line-21 Field 1 or 2). After valid data has been read the corresponding F*RDY bit is set to LOW until new data has arrived. The polling frequency has to be slightly higher than the frame or field frequency, respectively.
The real time control and status output signal contains serial information about the actual system clock (increment of the HPLL), subcarrier frequency [increment and phase (via reset) of the FSC-PLL] and PAL sequence bit. The signal can be used for various applications in external circuits, e.g. in a digital encoder to achieve clean encoding (see Fig.20). 8.13 The Line-21 text slicer
The text slicer block detects and acquires Line-21 Closed Captioning data from a 525-line CVBS signal. Extended data services on Line-21 Field 2 are also supported. If valid data is detected the two data bytes are stored in two I2C-bus registers. A parity check is also performed and the result is stored in the MSB of the corresponding byte. A third I2C-bus register is provided for data valid and data ready flags. The two bits F1VAL and F2VAL indicate that the input signal carries valid Closed Captioning data in the corresponding fields. The data ready bits F1RDY and F2RDY have to be evaluated if asynchronous I2C-bus reading is used.
1998 May 15
13
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in _white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ... 1998 May 15
n.c. VSSA1 VSSA2 AI22 AI21 VDDA1 VDDA2 AI12 AI11 64 9 5 AOSL (1 : 0) 6 8 11 7 10 12 SOURCE SWITCH FUSE (1 : 0) SOURCE SWITCH CLAMP CIRCUIT ANALOG AMPLIFIER DAC9 ANTI-ALIAS FILTER BYPASS SWITCH ADC2 TEST SELECTOR AND BUFFER 14 AOUT CLAMP CIRCUIT ANALOG AMPLIFIER DAC9 ANTI-ALIAS FILTER BYPASS SWITCH ADC1
handbook, full pagewidth
Philips Semiconductors
Enhanced Video Input Processor (EVIP)
14
MODE CONTROL CLAMP CONTROL GAIN CONTROL ANTI-ALIAS CONTROL MODE 0 MODE 1 MODE 2 HCL GLIMB HSY GLIMT WIPA SLTCA
FUSE (1 : 0)
VERTICAL BLANKING CONTROL
ANALOG CONTROL
HOLDG GAFIX WPOFF GUDL0-GUDL2 GAI20-GAI28 GAI10-GAI18 HLNRS UPTCV
VBSL
VBLNK SVREF
8
8
VSSS
13
CROSS
MULTIPLEXER
Product specification
SAA7111A
MGC655
LUM
CHR
AD2BYP AD1BYP
Fig.5 Analog input processing.
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in _white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
gewidth
1998 May 15
LUM CHR
n.c. 1 TRST TCK TDI TMS TDO 58 59 3 4 2 TEST CONTROL BLOCK QUADRATURE DEMODULATOR
Philips Semiconductors
Enhanced Video Input Processor (EVIP)
AD2BYP
AD1BYP
SECAM PROCESSING sequential UV signals LOW-PASS CHBW0 CHBW1
PHASE DEMODULATOR
VDDD1-5
57,41,33, 25,18 POWER-ON CONTROL
SUBCARRIER GENERATION
LEVEL ADJUSTMENT, BRIGHTNESS, CONTRAST, AND SATURATION CONTROL
52
FEI
Y
HUEC
SUBCARRIER INCREMENT GENERATION AND DIVIDER
RGB MATRIX interpolation dithering
RGB
AMPLITUDE DETECTOR
OUTPUT FORMATTER AND INTERFACE
42 to 51
VPO (9 : 0) VPO (15 : 10) HREF
34 to 39
RES
23
BURST GATE ACCUMULATOR LOOP FILTER
GAIN CONTROL AND Y-DELAY COMPENSATION
DIT UV
CBR 31
COMB FILTERS SECAM RECOMBINATION GPSW OFTS0 RTSE1 OFTS1 RGB888 RTSE0 VIPB OEYC VLOF OEHV COLO FECO COMPO VRLN VSTA (8 : 0) VSTO (8 : 0)
15
CE CLOCKS
CSTD 1 CSTD 0 INCS
FCTC
CODE
BRIG CONT SATN
DCCF
V
SSD1-5
56,40,32,26,19 VBI DATA BYPASS TUF
fH/2 switch signal
60
MGG062
RTCO
LUM
Y
Product specification
SAA7111A
Fig.6 Chrominance circuit.
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in _white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ... 1998 May 15 16
2
Philips Semiconductors
Enhanced Video Input Processor (EVIP)
LUM
Y
LUMINANCE CIRCUIT
PREFILTER CHROMINANCE TRAP VARIABLE BAND-PASS FILTER WEIGHTING AND ADDING STAGE
PREF
BYPS VBLB
BPSS0 BPSS1 PREF
PREFILTER SYNC
MATCHING AMPLIFIER
APER0 APER1 VBLB
CLOCK CIRCUIT
CLOCKS
VBLB LINE-LOCKED CLOCK GENERATOR PHASE DETECTOR COARSE DAC6 HPLL VTRC EXFIL
LINE 21 TEXT SLICER
SYNC SLICER
PHASE DETECTOR FINE
22 20 21
CREF LLC LLC2
BYTE1 BYTE2 STATUS
SYNCHRONIZATION CIRCUIT
VNOI0 VNOI1 VTRC
I C BUS CONTROL
FIDT
AUFD HSB HSS FSEL VTRC
CLOCK GENERATION CIRCUIT
15 16 24
VDDA0 VSSA0 CE
HLCK STTC
VTRC
INCS DISCRETE TIME OSCILLATOR 2 CRYSTAL CLOCK GENERATOR 55 54 XTALI XTAL
GPSW
53
I C-BUS INTERFACE 61 63 62
2
VERTICAL PROCESSOR 30 29 17
COUNTER
LOOP FILTER 2 28
27 HS
MGC654
IICSA SCL SDA
VS RTS0 VREF
RTS1
handbook, full pagewidth
Product specification
SAA7111A
Fig.7 Luminance and sync processing.
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
handbook, full pagewidth
TBP7 to 0 (CVBS)
0 MUX CVBS UP 1 SWHI
AD1BYP
0 MUX BYP UP 1 REGISTER VPO15 to 8
Y or YUV
(LUMA see Fig. 37)
BCHI1 VBP0 VBP4 BCHI1 to 0 I2C-bus 0 0 1 1
BCHI0 0 1 0 1
SWHI 1 0 VBP0 VBP4 VIPB I2C-bus
0 MUX CVBS UP 1 SWLO
AD2BYP
0 MUX BYP UP 1 REGISTER VPO7 to 0
UV or YUV
(CHROMA see Fig. 37)
BCLO1 VBP0 VBP4 BCLO1 to 0 I2C-bus 0 0 1 1
BCLO0 0 1 0 1
SWLO 1 0 VBP0 VBP4
REG V_GATE (programmable) EN
4 x REG VBP4
HREFINT
CLOCK 0
CLOCK 0 VBP0
MGG064
HREFINT = internal horizontal reference. TBP = upsampled CVBS input data (27 MHz). AD1BYP/AD2BYP = digitized CVBS input data and Y/C input data (13.5 MHz). VBP0 = programmable vertical reference signal. VBP4 = delayed programmable vertical reference signal (4LLC clocks delay).
Fig.8 Multiplexing of the CVBS signal to the VPO-bus.
1998 May 15
17
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
handbook, full pagewidth
REG EN VV CC TT RR 10 0 0 REG 1 1 0 1 0 1
VREF CCIR 656
VREFOUT
HREFINT VBP0 VBP4
CLOCK 0
VREFINT VREF CCIR 656 VBP0 VBP4 0
REG HREF
VREFINT EN HREFINT CLOCK 0
CLK0 REG
VCTR1 to 0 1
MUX
VREF
CLOCK 0 COMPO VREF_CCIR 656 = vertical reference signal referring to the field interval definitions of CCIR656. HREFINT = internal horizontal reference signal. VREFINT = internal vertical reference signal. VBP0 = programmable vertical reference signal. VBP4 = delayed programmable vertical reference signal (4LLC clocks delay).
MGG065
Fig.9 VREF output signal generation.
handbook, full pagewidth
CREFINT
CC CC TT RR 10 0 0 1 1 0 1 0 1
CREFOUT REG CREFINT 0 if VREF = 0 1 if VREF = 0 1 (always HIGH) CLOCK 0
MGG066
selected VREF CCTR1 to 0
CREF
CREFINT = internal clock qualifier signal.
Fig.10 CREF output signal generation.
1998 May 15
18
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
9 BOUNDARY-SCAN TEST 9.2 Device identification codes
SAA7111A
The SAA7111A has built in logic and 5 dedicated pins to support boundary-scan testing which allows board testing without special hardware (nails). The SAA7111A follows the `IEEE Std. 1149.1 - Standard Test Access Port and Boundary-Scan Architecture' set by the Joint Test Action Group (JTAG) chaired by Philips. The 5 special pins are Test Mode Select (TMS), Test Clock (TCK), Test Reset (TRST), Test Data Input (TDI) and Test Data Output (TDO). The BST functions BYPASS, EXTEST, INTEST, SAMPLE, CLAMP and IDCODE are all supported (see Table 1). Details about the JTAG BST-TEST can be found in the specification "EEE Std. 1149.1". A file containing the detailed Boundary-Scan Description Language (BSDL) description of the SAA7111A is available on request. 9.1 Initialization of boundary-scan circuit
A Device Identification Register (DIR) is specified in `IEEE Std. 1149.1-1990 - IEEE Standard Test Access Port and Boundary-Scan Architecture' (IEEE Std. 1149.1b-1994). It is a 32-bit register which contains fields for the specification of the IC manufacturer, the IC part number and the IC version number. Its biggest advantage is the possibility to check for the correct ICs mounted after production and determination of the version number of ICs during field service. When the IDCODE instruction is loaded into the BST instruction register, the identification register will be connected between TDI and TDO of the IC. The identification register will load a component specific code during the CAPTURE_DATA_REGISTER state of the TAP controller and this code can subsequently be shifted out. At board level this code can be used to verify component manufacturer, type and version number. The device identification register contains 32-bits, numbered 31 to 0, where bit 31 is the Most Significant Bit (MSB) (nearest to TDI) and bit 0 is the Least Significant Bit (LSB) (nearest to TDO); see Fig.11.
The Test Access Port (TAP) controller of an IC should be in the reset state (TEST_LOGIC_RESET) when the IC is in functional mode. This reset state also forces the instruction register into a functional instruction such as IDCODE or BYPASS. To solve the power-up reset, the standard specifies that the TAP controller will be forced asynchronously to the TEST_LOGIC_RESET state by setting the TRST pin LOW. Table 1 BST instructions supported by the SAA7111A
INSTRUCTION BYPASS EXTEST SAMPLE
DESCRIPTION This mandatory instruction provides a minimum length serial path (1 bit) between TDI and TDO when no test operation of the component is required. This mandatory instruction allows testing of off-chip circuitry and board level interconnections. This mandatory instruction can be used to take a sample of the inputs during normal operation of the component. It can also be used to preload data values into the latched outputs of the boundary-scan register. This optional instruction is useful for testing when not all ICs have BST. This instruction addresses the bypass register while the boundary-scan register is in external test mode. This optional instruction will provide information on the components manufacturer, part number and version number. This optional instruction allows testing of the internal logic (no support for customers available). This private instruction allows testing by the manufacturer (no support for customers available).
CLAMP IDCODE INTEST USER1
1998 May 15
19
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
handbook, full pagewidth
MSB 31 TDI 28 27 1111000100010001 12 11 00000010101 1
LSB 0 1 TDO
0010
4-bit version code
16-bit part number
11-bit manufacturer indentification
MGL111
Fig.11 32 bits of identification code.
1998 May 15
20
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
10 GAIN CHARTS
SAA7111A
handbook, halfpage
MGC648
dB 5.5
factor dB = 20 x log 10 gain =
(
768 - i
3.5
bit [8] = 1 i > 256 bit [8] = 0 i < 256
1.5
-0.5 -2.5 -4.5 0 256 gain value (i) 512
factor dB = 20 x log 10 gain =
Fig.12 Amplifier curve.
handbook, full pagewidth
ANALOG INPUT ADC
NO BLANKING ACTIVE
1
VBLK
0
<- CLAMP
GAIN ->
1
HCL
0
1
HSY
1
CLL
0
0
SBOT
1
+ CLAMP
- CLAMP
NO CLAMP
+ GAIN
- GAIN
WIPE = white peak level (254); SBOT = sync bottom level (1); CLL = clamp level [60 Y (128 C)]; HSY = horizontal sync pulse; HCL = horizontal clamp pulse.
Fig.13 Clamp and gain flow.
1998 May 15
21
(
(
(
257 + i 512
7.5
512
0
1
WIPE
0
fast - GAIN
slow + GAIN
MGC647
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
handbook, full pagewidth
ANALOG INPUT AMPLIFIER ANTI-ALIAS FILTER ADC 8 LUMA/CHROMA DECODER gain DAC 9
NO ACTION
1
VBLK 1
0 0
HOLDG
1
X 1
0 0
HSY
0 0 1
>254
1 1 0 1 0
<4
<1
>254
X=0 1 >248 0
X=1
+1/F STOP
+1/L
-1/LLC2
+1/LLC2
-1/LLC2
+/- 0
GAIN ACCUMULATOR (18 BITS) ACTUAL GAIN VALUE 9-BIT (AGV) [-6/+6 dB] 1 0
X 1
HSY 1
0 0
Y
AGV
UPDATE GAIN VALUE 9-BIT
FGV
MGC652
X = system variable; Y = IAGV - FGVI > GUDL; VBLK = vertical blanking pulse; HSY = horizontal sync pulse; AGV = actual gain value; FGV = frozen gain value.
Fig.14 Gain flow chart.
1998 May 15
22
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
11 LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 134); all ground pins connected together and all supply pins connected together. SYMBOL VDDD VDDA Vi(A) Vo(A) Vi(D) Vo(D) VSS Tstg Tamb Tamb(bias) Vesd Note 1. Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 k resistor. 12 CHARACTERISTICS VDDD = 3.0 to 3.6 V; VDDA = 3.1 to 3.5 V; Tamb = 25 C; unless otherwise specified. SYMBOL Supplies VDDD IDDD PD VDDA IDDA PA PA+D Ppd Analog part Iclamp Vi(p-p) clamping current input voltage (peak-to-peak value) VI = 0.9 V DC - 3.5 0.7 - 1.2 A V for normal video levels 0.3 [1 V (p-p)]; -3 dB termination 27/47 and AC coupling required; coupling capacitor = 22 nF clamping current off 200 - 23 digital supply voltage digital supply current digital power analog supply voltage analog supply current analog power analog and digital power analog and digital power in CE connected to ground power-down mode (since version 3) AOSL = [1:0] = 00b; AOUT not connected 3.0 - - 3.1 - - - - 3.3 63 0.21 3.3 52 0.17 0.38 0.02 3.6 70 - 3.5 - - - - V mA W V mA W W W PARAMETER CONDITIONS MIN. TYP. MAX. UNIT PARAMETER digital supply voltage analog supply voltage input voltage at analog inputs output voltage at analog output input voltage at digital inputs and outputs output voltage at digital outputs voltage difference between VSSAall and VSSall storage temperature operating ambient temperature operating ambient temperature under bias electrostatic discharge all pins note 1 outputs in 3-state outputs active CONDITIONS MIN. -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 - -65 0 -10 -2000 MAX. +4.6 +4.6 VDDA + 0.5 (4.6 max.) VDDA + 0.5 +5.5 VDDD + 0.5 100 +150 70 +80 +2000 UNIT V V V V V V mV C C C V
|Zi| Ci 1998 May 15
input impedance input capacitance
- -
- 10
k pF
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
SYMBOL cs B diff
PARAMETER channel crosstalk
CONDITIONS fi = 5 MHz at -3 dB - - -
MIN. -
TYP.
MAX. -50 - -
UNIT dB
Analog-to-digital converters bandwidth differential phase (amplifier plus anti-alias filter = bypass) differential gain (amplifier plus anti-alias filter = bypass) ADC clock frequency DC differential linearity error DC integral linearity error 7 2 MHz deg
Gdiff
-
2
-
%
fclkADC DLE ILE Digital inputs VIL(SCL,SDA) VIH VIL(xtal) VIH(xtal) VILn VIHn ILI Ci Ci(n)
12.8 - - -0.5 0.7VDDD -0.3 2.0 -0.3 2.0 - outputs at 3-state - -
- 0.7 1 - - - - - - - - -
14.3 - -
MHz LSB LSB
LOW level input voltage pins SDA and SCL HIGH level input voltage pins SDA and SCL LOW level CMOS input voltage pin XTALI HIGH level CMOS input voltage pin XTALI LOW level input voltage all other inputs HIGH level input voltage all other inputs input leakage current input capacitance input capacitance all other inputs
+0.3VDDD VDDD + 0.5 +0.8 VDDD + 0.3 +0.8 5.5 1 8 5
V V V V V V A pF pF
Digital outputs VOL(SCL,SDA) VOL VOH VOL(clk) VOH(clk) ILO tSU;DAT tHD;DAT 1998 May 15 LOW level output voltage pins SDA and SCL LOW level output voltage HIGH level output voltage LOW level output voltage for clocks HIGH level output voltage for clocks output leakage current at 3-state mode SDA/SCL at 3 mA (6 mA) sink current VDDD = max; IOL = 2 mA VDDD = min, IOH = -2 mA - 0 2.4 -0.5 2.4 - - - - - - - - - 0.4 (0.6) 0.4 VDDD + 0.5 +0.6 VDDD + 0.5 10 - - V V V V V A
FEI input timing input data set-up time input data hold time 24 13 3 ns ns
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
SYMBOL
PARAMETER
CONDITIONS
MIN. - - - -
TYP.
MAX.
UNIT
Data and control output timing; note 1 CL tOHD;DAT tPD tPDZ output load capacitance output hold time propagation delay propagation delay to 3-state CL = 15 pF CL = 25 pF 15 4 - - 40 - 20 20 pF ns ns ns
Clock output timing (LLC and LLC2); note 2 CL(LLC) Tcy LLC tr tf td output load capacitance cycle time duty factors for tLLCH/tLLC and tLLC2H/tLLC2 rise time LLC, LLC2 fall time LLC, LLC2 delay time LLC output to LLC2 output at 1.5 V; LLC/LLC2 = 25 pF LLC LLC2 CL = 25 pF 15 35 70 40 - - -4 - - - - - - - 40 39 78 60 5 5 +8 pF ns ns % ns ns ns
Data qualifier output timing (CREF) tOHD;CREF tPD;CREF output hold time propagation delay from positive edge of LLC CL = 15 pF CL = 25 pF 4 - - - - 20 ns ns
Clock input timing (XTALI) XTALI fHn fH/fHn fSCn duty factor for tXTALIH/tXTALI nominal frequency nominal line frequency permissible static deviation 50 Hz field 60 Hz field Subcarrier PLL nominal subcarrier frequency PAL BGHI NTSC M; NTSC-Japan PAL M PAL N fSC fn f/fn lock-in range Crystal oscillator nominal frequency permissible nominal frequency deviation 3rd harmonic; note 3 - - 24.576 - - 50 MHz 10-6 - - - - 400 4433619 3579545 3575612 3582056 - - - - - - Hz Hz Hz Hz Hz 40 - - - - 60 - - 5.7 %
Horizontal PLL 15625 15734 - Hz Hz %
1998 May 15
25
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
SYMBOL Crystal oscillator fn f/fn Tf/fn
PARAMETER
CONDITIONS - - -
MIN.
TYP. -
MAX.
UNIT
nominal frequency permissible nominal frequency deviation permissible nominal frequency deviation with temperature
3rd harmonic; note 3
24.576 - -
MHz 10-6 10-6
50 20
CRYSTAL SPECIFICATION (X1) Tamb(X1) CL Rs C1 C0 Notes 1. The levels must be measured with load circuits; 1.2 k at 3 V (TTL load); CL = 50 pF. 2. The effects of rise and fall times are included in the calculation of tOHD;DAT, tPD and tPDZ. Timings and levels refer to drawings and conditions illustrated in Figs 15 and 16. 3. Order number: Philips 4322 143 05291. Table 2 Processing delay FUNCTION Without amplifier or anti-alias filter With amplifier, without anti-alias filter With amplifier and anti-alias filter Note 1. Digital processing delay (LLC CLOCKS) for VBI data is defined in Fig.23 `Horizontal timing diagram'. TYPICAL ANALOG DELAY AI22 ADCIN (AOUT) (ns) 15 25 75 179 DIGITAL DELAY ADCIN VPO (LLC CLOCKS) [YDEL(2 to 0) = 000]; note 1 operating ambient temperature load capacitance series resonance resistor motional capacitance parallel capacitance 0 8 - - - - - 40 1.5 20% 3.5 20% 70 - 80 - - C pF fF pF
1998 May 15
26
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
13 TIMING DIAGRAMS
SAA7111A
handbook, full pagewidth
tLLC tLLCL CLOCK OUTPUT LLC t t LLCH tPD 2.4 V 0.6 V
MGC658
2.6 V 1.5 V 0.6 V tr
f
tOHD;DAT OUTPUTS VPO, HREF, VREF, VS, HS
An explanation of the output formats is given in Table 6.
Fig.15 Clock/data timing (8-bit CCIR-656 format of the VPO-bus).
handbook, full pagewidth
tLLC tLLCL
tLLC 2.6 V 1.5 V 0.6 V tr t PD 2.4 V 0.6 V
CLOCK OUTPUT LLC tLLCH tPD OUTPUT CREF tOHD;CREF tdLLC2 CLOCK OUTPUT LLC2 tPD tOHD;DAT OUTPUTS VPO, HREF, VREF, VS, HS tOHD;CREF tdLLC2 tf
2.6 V 1.5 V 0.6 V
2.4 V 0.6 V
MGC659
An explanation of the output formats is given in Table 6. The FEI timing of the VPO-bus is illustrated in Figs 18 and 19.
Fig.16 Clock/data timing (12 and 16-bit CCIR-601 format of the VPO-bus).
1998 May 15
27
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
handbook, full pagewidth
tLLC tLLCL
tLLC 2.4 V 1.5 V 0.6 V
CLOCK OUTPUT LLC tf tr
OUTPUT CREF
,,,, ,,,,, ,,,,, ,,,, ,,,,, ,,,,, ,,,, ,,,,, ,,,,,
tLLCH tPD;CREF tOHD;CREF tOHD;CREF tPD;CREF tOHD;CREF R(7 : 3) G(7 : 5)
2.4 V 1.5 V 0.6 V
RGB (8, 8, 8) data VPO15 to VPO8
2.4 V 1.5 V 0.6 V tOHD;DAT G(4 : 2) B(7 : 3)
RGB (8, 8, 8) data VPO7 to VPO0
,,, ,,,
R(2 : 0) G(1 : 0) B(2 : 0)
,, ,,
tPD
,,, ,,,
tOHD;DAT
2.4 V 1.5 V 0.6 V
MBH227
An explanation of the output formats is given in Table 6.
Fig.17 Clock/data timing for RGB (8, 8 and 8) output format.
handbook, full pagewidth
LLC
CREF
HREF
tSU;DAT tPDZ
tHD;DAT
FEI tOHD;DAT VPO
t
PD
MGC656
to 3-state
from 3-state
I2C-bus bit FECO = 1.
Fig.18 FEI timing diagram (FEI sampling at CREF = HIGH) for OFTS = 0, 1 or 2).
1998 May 15
28
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
handbook, full pagewidth
LLC
CREF
HREF tSU;DAT FEI tPDZ tOHD;DAT VPO
MGC657
tHD;DAT
tPD
to 3-state
from 3-state
Timing is compatible with SAA7110; I2C-bus bit FECO = 0.
Fig.19 FEI timing diagram (FEI sampling at CREF = LOW) for OFTS = 0, 1 or 2).
handbook, full pagewidth
transmitted once per line SEQUENCE RESERVED LOW HIGH INCRHPLL 16
15 01 0
RESERVED
DTO RESET(1) RESERVED 50 Hz fields: 235 60 Hz fields: 232
INCRFSCPLL 45
22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
128 BIT NO.: TIME SLOT:
2
31
16 19
63 67 68
MGC649
(1) Set to zero for one transmission, if a phase reset of the fsc - DTO is applied via I2C-bus bit CDTO. RTCO sequence is generated in LLC/4. The HPLL increment represents the actual LFCO frequency (fLFCO x 4 = fLLC); 16 LSB from 20, upper four bits are fixed to 0100b. INCR HPLL x f XTAL f LFCO = -----------------------------------------------word length DTO2 2 Where: fXTAL = 24.576 MHz, word length DTO2 = 20 bits. The fsc increment represents the actual subcarrier frequency (related to the actual clock); 23 LSB from 24, MSB is 0b. INCR FSCPLL x f XTAL INCR HPLL f sc = ------------------------------------------------------ x --------------------------word length DTO1 19 2 2 Where: word length DTO1 = 24 bits.
Fig.20 Real time control output.
1998 May 15
29
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
handbook, full pagewidth
LLC
CREF
LLC2
START OF ACTIVE LINE HREF 0 1 2 3 4
Yn
UVn
U0
V0
U2
V2
U4
END OF ACTIVE LINE HREF 715 716 717 718 719
Yn
UVn
V714
U716
V716
U718
V718
MGC646
Fig.21 HREF timing diagram.
handbook, full pagewidth
LLC
tSU
tHD
FEI
tOHD
VPO
tPDZ
,,, ,,,
tPD
MBH766
Fig.22 FEI timing in CCIR 656 mode [OFTS (1 : 0) = 3].
1998 May 15
30
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
handbook, full pagewidth
CVBS 26 x 1/LLC VBI 179 x 1/LLC
burst
burst
processing delay CVBS->VPO(2)
Y - output HREF (50 Hz) 720 x 2/LLC 27 x 2/LLC RTS1 (PLIN)(1)
0
sync clipped
12 x 2/LLC 144 x 2/LLC 43 x 2/LLC
4/LLC HS
HS (50 Hz) 108 programming range (step size: 8/LLC) HREF (60 Hz) 23 x 2/LLC
0
-107
16 x 2/LLC 720 x 2/LLC HS (60 Hz) HS (60 Hz) programming range (step size: 8/LLC) -106
MGD701
138 x 2/LLC
107
0
(1) PLIN is switched to output RTS1 via I2C-bus bit RTSE1 = 0. (2) See Table 2. (3) HDEL (1 : 0) = 0 0, YDEL (2 : 0) = 0 0 0.
Fig.23 Horizontal timing diagram.
1998 May 15
31
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
handbook, full pagewidth
622
623
624
625
1
2
3
4
5
6
7
8
22
23
input CVBS HREF VREF VRLN = 1(2) VREF VRLN = 0(2) 535 x 2/LLC VS RTS0 (ODD)(1)
(a) 1st field
310 input CVBS HREF
311
312
313
314
315
316
317
318
319
320
335
336
337
VREF VREF
VRLN = 1(2) VRLN = 0(2) 77 x 2/LLC
VS
RTS0 (ODD)(1) (b) 2nd field
MGG069
(1) ODD is switched to output RTS0 via I2C-bus bit RTSE0 = 0. (2) Additional VREF positions can be achieved via I2C-bits VCTR1 and VCTR0 (see Fig.9). The luminance peaking and the chrominance trap are bypassed during VREF = 0 if I2C-bus bit VBLB is set to logic 1. The chrominance delay line (chrominance-comb filter for NTSC, phase error correcting for PAL) is disabled during VREF = 0.
Fig.24 Vertical timing diagram for 50 Hz [nominal input signal VNL in normal mode (VNOI = 00b)].
1998 May 15
32
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
handbook, full pagewidth
522 (525)
523 (1)
524 (2)
525 (3)
1 (4)
2 (5)
3 (6)
4 (7)
5 (8)
6 (9)
7 (10)
8 (11)
17 (20)
18 (21)
19 (22)
(2)
input CVBS HREF VRLN = 1(3) VREF VRLN = 0(3) VREF 520 x 2/LLC VS RTS0 (ODD)(1) (a) 1st field
259 (262) input CVBS HREF
260 (263)
261 (264)
262 (265)
263 (266)
264 (267)
265 (268)
266 (269)
267 (270)
268 (271)
269 (272)
270 (273)
271 (274)
280 (283)
281 (284)
282 (285)
(2)
VRLN = 1(3) VREF VRLN = 0(3) VREF 81 x 2/LLC VS RTS0 (ODD)(1) (b) 2nd field
MGG070
(1) ODD is switched to output RTS0 via I2C-bus bit RTSE0 = 0. (2) Line numbers in parenthesis refer to CCIR line counting. (3) Additional VREF positions can be achieved via I2C-bus bits VCTR1 and VCTR0 (see Fig.9). The luminance peaking and the chrominance trap are bypassed during VREF = 0 if I2C-bus bit VBLB is set to logic 1. The chrominance delay line (chrominance-comb filter for NTSC, phase error correcting for PAL) is disabled during VREF = 0.
Fig.25 Vertical timing diagram for 60 Hz [nominal input signal VNL in normal mode (VNOI = 00b)].
1998 May 15
33
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
Table 3 OEYC 0 1 0 1 0 1 0 1 Note 1. Only active in 656-format (OFTS = 3). Digital output control FEI 0 0 1 1 0 0 1 1 TCLO(1) 0 0 0 0 1 1 1 1 Z active Z Z VPO 15 to 8 Z active Z Z Z Z Z Z Table 4 Clock frequencies CLOCK XTAL LLC LLC2 LLC4 LLC8 VPO 7 to 0 14 CLOCK SYSTEM 14.1 Clock generation circuit
SAA7111A
The internal CGC generates the system clocks LLC, LLC2 and the clock reference signal CREF. The internally generated LFCO (triangular waveform) is multiplied by 4 via the analog PLL (including phase detector, loop filter, VCO and frequency divider). The rectangular output signals have a 50% duty factor.
FREQUENCY (MHz) 24.576 27 13.5 6.75 3.375
handbook, full pagewidth
LFCO
BAND PASS FC = LLC/4
ZERO CROSS DETECTION
PHASE DETECTION
LOOP FILTER
OSCILLATOR
LLC
DIVIDER 1/2
DIVIDER 1/2
LLC2
DELAY
MGC632
CREF
Fig.26 Block diagram of clock generation circuit.
1998 May 15
34
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
14.2 Power-on control
SAA7111A
Power-on reset is activated at power-on, chip enable, PLL clock generation failure and if the supply voltage falls below 2.7 V. The RES signal can be applied to reset other circuits of the digital picture processing system.
handbook, full pagewidth
POC VDDA ANALOG
POC VDDD DIGITAL
CLOCK PLL LLC POC LOGIC CE POC DELAY RES
CLK0
CE
XTAL
LLCINT
RESINT
LLC
RES some ms 20 to 200 s PLL-delay <1 ms 896 LCC digital delay 128 LCC
MGC633
CE = chip enable input; XTAL = crystal oscillator output; LLCINT = internal system clock; RESINT = internal reset; LLC = line-locked clock output; RES = reset output (active LOW).
Fig.27 Power-on control circuit.
1998 May 15
35
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
Table 5 Power-on control sequence PIN OUTPUT STATUS
SAA7111A
INTERNAL POWER-ON CONTROL SEQUENCE Directly after power-on asynchronous reset
FUNCTION
VPO15 to VPO0, RTCO, RTS0, RTS1, direct switching to high impedance for GPSW, HREF, VREF, HS, VS, LLC, 20 to 200 ms LLC2 and CREF are in high-impedance state LLC, LLC2, CREF, RTCO, RTS0, internal reset sequence RTS1, GPSW and SDA become active; VPO15 to VPO0, HREF, VREF, HS and VS are held in high-impedance state VPO15 to VPO0, HREF, VREF, HS and after power-on (reset sequence) a VS are held in high-impedance state complete I2C-bus transmission is required
Synchronous reset sequence
Status after power-on control sequence
15 OUTPUT FORMATS Table 6 Output formats of the VPO bus (note 1) 411 (12-BIT) Y07 Y06 Y05 Y04 Y03 Y02 Y01 Y00 U07 U06 V07 V06 X X X X 0 Y17 Y16 Y15 Y14 Y13 Y12 Y11 Y10 U05 U04 V05 V04 X X X X 1 0 LLC2 OFTS0 = 0 OFTS1 = 1 RGB888 = X Y27 Y26 Y25 Y24 Y23 Y22 Y21 Y20 U03 U02 V03 V02 X X X X 2 Y37 Y36 Y35 Y34 Y33 Y32 Y31 Y30 U01 U00 V01 V00 X X X X 3 422 (16-BIT)(2) Y07 Y06 Y05 Y04 Y03 Y02 Y01 Y00 U07 U06 U05 U04 U03 U02 U01 U00 0 0 LLC2 OFTS0 = 1 OFTS1 = 0 RGB888 = X Y17 Y16 Y15 Y14 Y13 Y12 Y11 Y10 V07 V06 V05 V04 V03 V02 V01 V00 1 CCIR-656 (8-BIT)(3) U07 U06 U05 U04 U03 U02 U01 U00 X X X X X X X X 0 0 LLC OFTS0 = 1 OFTS1 = 1 RGB888 = X Y07 Y06 Y05 Y04 Y03 Y02 Y01 Y00 X X X X X X X X V07 V06 V05 V04 V03 V02 V01 V00 X X X X X X X X 1 Y17 Y16 Y15 Y14 Y13 Y12 Y11 Y10 X X X X X X X X RGB (16-BIT)(4) R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B4 B3 B2 B1 B0 - - LLC2 OFTS0 = 0 OFTS1 = 0 RGB888 = 0 RGB (24-BIT)(4) R7 R6 R5 R4 R3 G7 G6 G5 G4 G3 G2 B7 B6 B5 B4 B3 note 5 - - OFTS0 = 0 OFTS1 = 0 RGB888 = 1 R7 R6 R5 R4 R3 G7 G6 G5 R2 R1 R0 G1 G0 B2 B1 B0 note 6
BUS SIGNAL VPO15 VPO14 VPO13 VPO12 VPO11 VPO10 VPO9 VPO8 VPO7 VPO6 VPO5 VPO4 VPO3 VPO2 VPO1 VPO0 Pixel order Y Pixel order UV Data rates I2C-bus control signals
1998 May 15
36
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
Notes to Table 5 1. VPO bus allows connection to 5 V video data bus systems. 2. Values in accordance with CCIR 601. 3. Before and after the video data, video timing codes are inserted in accordance with CCIR 656. a) VPO15 to VPO8 = VPO7 to VPO0 = CCIR 656 data if I2C-bus bit TCLO = 0 b) VPO15 to VPO8 = CCIR 656 data, VPO7 to VPO0 = 3-state if I2C-bus bit TCLO = 1.
SAA7111A
4. During HREF = LOW RGB levels are set to 16 (10 hex). RGB 16-bit is achieved by dropping the LSBs of the 8-bit signals (after dithering if desired). 5. CREF = 0 (see Fig.17). 6. CREF = 1 (see Fig.17).
handbook, full pagewidth
+255 +235 white
+255 +240 +212
blue 100% blue 75%
+255 +240 +212
red 100% red 75%
+128
LUMINANCE 100%
+128 U-COMPONENT
colourless
+128 V-COMPONENT
colourless
+44 +16 0 black +16 0
yellow 75% yellow 100%
+44 +16 0
cyan 75% cyan 100%
MGC634
a.
Y output range.
b.
U output range (Cb).
c.
V output range (Cr).
CCIR Rec. 602 digital levels.
Equations for modification to the YUV levels via BCS control I2C-bus bytes BRIG, CONT and SATN. Luminance: CONT Y OUT = Int ----------------- x ( Y - 128 ) + BRIG 71 Chrominance: SATN UV OUT = Int ---------------- x ( Cr, Cb - 128 ) + 128 64 It should be noted that the resulting levels are limited to 1 to 254 in accordance with CCIR-601/656 standard.
Fig.28 VPO output signal range with default BCS settings.
1998 May 15
37
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
handbook, full pagewidth
+255 +209 white
+255 +199 white
LUMINANCE
LUMINANCE
+71 +60 SYNC 1
black black shoulder
+60 SYNC
black shoulder = black
sync bottom
1
sync bottom
MGD700
a.
For sources containing 7.5 IRE black level offset (e.g. NTSC-M).
b.
For sources not containing black level offset.
VBI data levels are not dependent on BCS settings.
Fig.29 VBI data bypass output range.
handbook, full pagewidth
quartz (3rd harmonic) 24.576 MHz XTAL C= 10 pF XTALI
54
XTAL
54
SAA7111A
55 XTALI 55
SAA7111A
L = 10 H 20% C= 10 pF C= 1 nF
MGG072
a.
With quartz crystal.
b.
With external clock.
Order number: Philips 4322 143 05291.
Fig.30 Oscillator application.
1998 May 15
38
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
16 APPLICATION INFORMATION
SAA7111A
handbook, full pagewidth
VDD VDDA C8 100 nF VSSA
C15 C9 100 nF C7 n.c. VDDA0 VDDA1 TRST 100 nF VDDA2 n.c. TMS TDO TDI n.c. TCK BST VSS VDD1 VDD2 VDD3 VDD4 VDD5 100 nF C14 C13 100 nF 100 nF C12 C11 100 nF 100 nF VSS
15 R10 AI22 27 R4 C4 6 22 nF
11
7
4
3
2
59
58
57
41
33
25
18 34 35 36 37 38 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 VPO(15 : 0)
VSSA 47 R9 AI21 27 R3 C3 8 22 nF
39 42 43 44
VSSA 47 R8 AI12 27 R2 VSSA 47 R7 AI11 27 R1 VSSA 47 VDDD SCL SDA FEI R6
C2 10 22 nF
45 46 47 48
C1 12 22 nF
49
SAA7111A
50 51
R5 1 k
24 63 62 52
31 17 27 30 60 28 29 53 14
HREF VREF HS VS RTCO RTS1 RTS0 GPSW AOUT LLC LLC2 CREF RES
1 k VSS XTAL 54 55
20 21 22 23
Q1(24.576 MHz) XTALI L1 10 H C16 1 nF C17 C18 16 VSSA0 9 VSSA1 5 VSSA2 13 VSSS 56 40 VSS1 VSS2 32 26 VSS3 VSS4 19 61 IICSA VSS5 64 1
10 pF 10 pF VSS
n.c. VSSA VSS VSS n.c.
MGG071
Fig.31 Application diagram.
1998 May 15
39
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
handbook, full pagewidth
34 35 36 VPO (15 : 8) 37 38 39 42 43 44 45 46 VPO (7 : 0) 47 48 49 50 51
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VPO (15 : 11) 3
R (7 : 3)
VPO (10 : 8) 3 VPO (7 : 5) 3 VSS OEN D7 D6 D5 D4 D2 D1 D0 VSS VSS VPO (4 : 0) 5 e.g. VDD O7 O6 O5 O4 O2 O1 00 CLK
G (7 : 5) G (4 : 2)
VDD R (2 : 0) 3 8
R (7 : 0)
G (1 : 0) 2 B (2 : 0) 3 8 8
G (7 : 0) B (7 : 0)
D3 74HCT574 O3
SAA7111A
31 17 27 30 60 28 29 53 14 20 21 32 23
B (7 : 3)
HREF VREF HS VS RTCO RTS1 RTS0 GPSW AOUT LLC CREF RES
MGG073
e.g. 74HCT240 LLC2 LLC2N
I2C-bus control bits: OFTS(1 : 0) = 00 (subaddress 10H, bits D7 and D6). RGB888 = 1 (subaddress 12H, bit D3).
Fig.32 Application diagram for RGB 24-bit output format.
16.1
Layout hints
Use separate ground planes for analog and digital ground. Connect these planes at one point directly under the device, by using a zero resistor. Use separate supply lines for analog and digital supply. Place the supply decoupling capacitors close to the supply pins.
Place the coupling (clamp) capacitors close to the analog input pins. Place the termination resistors close to the coupling capacitors. Care should be exercised concerning the hidden layout capacitors around the crystal application. To avoid reflection effects use serial resistors in the clock, sync and data lines.
1998 May 15
40
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
17 I2C-BUS DESCRIPTION 17.1 I2C-bus format Write procedure SLAVE ADDRESS W ACK-s SUBADDRESS ACK-s DATA (N BYTES)
SAA7111A
Table 7 S Table 8 S Sr Table 9
ACK-s
P
Read procedure (combined format) SLAVE ADDRESS W SLAVE ADDRESS R Description of I2C-bus format DESCRIPTION START condition repeated START condition 0100 1000b (IICSA = LOW) or 0100 1010b (IICSA = HIGH) 0100 1001b (IICSA = LOW) or 0100 1011b (IICSA = HIGH) acknowledge generated by the slave acknowledge generated by the master subaddress byte; see Table 10 data byte; see Table 10; note 1 STOP condition read/write control bit; X = 0, order to write (the circuit is slave receiver); X = 1, order to read (the circuit is slave transmitter) read = 49H or 4BH; note 2 write = 48H or 4AH IICSA = 0 or 1 ACK-s ACK-s SUBADDRESS DATA (N BYTES) ACK-s ACK-m P
CODE S Sr Slave address W Slave address R ACK-s ACK-m Subaddress Data P X = LSB slave address Slave address
Subaddresses
00H chip version 01H reserved 02h to 05H front-end part 06H to 13H decoder part 14H reserved 15H to 17H decoder part 18H to 19H reserved 1AH to 1CH Line-21 text slicer part 1DH to 1EH reserved 1FH status byte
read and write; note 3 - read and write read and write - read and write - read only - read only
Notes 1. If more than one byte DATA is transmitted then the auto-increment of the subaddress is performed. 2. During slave transmitter mode the SCL-LOW period may be extended by pulling SCL to LOW (in accordance with the I2C-bus specification). 3. The I2C-bus subaddress 00 has to be initialized with 0 before being read.
1998 May 15
41
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
Table 10 I2C-bus receiver/transmitter overview READ SLAVE ADDRESS 49H 4BH D7 ID07
(1)
SAA7111A
WRITE 48H 4AH D6 D5 ID05
(1)
IICSA 0 1
REGISTER FUNCTION Chip version Reserved Analog input contr 1 Analog input contr 2 Analog input contr 3 Analog input contr 4 Horizontal sync start Horizontal sync stop Sync control Luminance control Luminance brightness Luminance contrast Chroma saturation Chroma Hue control Chroma control Reserved Format/delay control Output control 1 Output control 2 Output control 3 Reserved V_GATE1_START V_GATE1_STOP V_GATE1_MSB Reserved Text slicer status Decoded bytes of the text slicer Reserved Status byte Note
SUBADDR 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18-19 1A 1B 1C 1D-1E 1F
D4 ID04
(1)
D3 ID03
(1)
D2 ID02
(1)
D1 ID01
(1)
D0 ID00
(1)
ID06
(1)
FUSE1
(1)
FUSE0 HLNRS GAI16 GAI26 HSB6 HSS6 FSEL PREF BRIG6 CONT6 SATN6 HUEC6 CSTD2
(1)
GUDL2 VBSL GAI15 GAI25 HSB5 HSS5 EXFIL BPSS1 BRIG5 CONT5 SATN5 HUEC5 CSTD1
(1)
GUDL1 WPOFF GAI14 GAI24 HSB4 HSS4
(1)
GUDL0 HOLDG GAI13 GAI23 HSB3 HSS3 VTRC VBLB BRIG3 CONT3 SATN3 HUEC3 DCCF
(1)
MODE2 GAFIX GAI12 GAI22 HSB2 HSS2 HPLL UPTCV BRIG2 CONT2 SATN2 HUEC2 FCTC
(1)
MODE1 GAI28 GAI11 GAI21 HSB1 HSS1 VNOI1 APER1 BRIG1 CONT1 SATN1 HUEC1 CHBW1
(1)
MODE0 GAI18 GAI10 GAI20 HSB0 HSS0 VNOI0 APER0 BRIG0 CONT0 SATN0 HUEC0 CHBW0
(1)
GAI17 GAI27 HSB7 HSS7 AUFD BYPS BRIG7 CONT7 SATN7 HUEC7 CDTO
(1)
BPSS0 BRIG4 CONT4 SATN4 HUEC4 CSTD0
(1)
OFTS1 GPSW RTSE1 VCTR1
(1)
OFTS0 CM99 RTSE0 VCTR0
(1)
HDEL1 FECO TCLO CCTR1
(1)
HDEL0 COMPO CBR CCTR0
(1)
VRLN OEYC RGB888 BCHI1
(1)
YDEL2 OEHV DIT BCHI0
(1)
YDEL1 VIPB AOSL1 BCLO1
(1)
YDEL0 COLO AOSL0 BCLO0
(1)
VSTA7 VSTO7
(1) (1) (1)
VSTA6 VSTO6
(1) (1) (1)
VSTA5 VSTO5
(1) (1) (1)
VSTA4 VSTO4
(1) (1) (1)
VSTA3 VSTO3
(1) (1)
VSTA2 VSTO2
(1) (1)
VSTA1 VSTO1 VSTO8
(1)
VSTA0 VSTO0 VSTA8
(1)
F2VAL BYTE13 BYTE23
(1)
F2RDY BYTE12 BYTE22
(1)
F1VAL BYTE11 BYTE21
(1)
F1RDY BYTE10 BYTE20
(1)
P1 P2
(1)
BYTE16 BYTE15 BYTE14 BYTE26 BYTE25 BYTE24
(1) (1) (1)
STTC
HLCK
FIDT
GLIMT
GLIMB
WIPA
SLTCA
CODE
1. All unused control bits must be programmed with logic 0.
1998 May 15
42
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
17.2 I2C-bus detail
SAA7111A
The I2C-bus receiver slave address is 48H/49H. Subaddresses 0F, 14, 18, 19, 1D and 1E are reserved; subaddress 01 is reserved for chip version. 17.2.1 SUBADDRESS 00
Table 11 Chip version SA00; note 1 LOGIC LEVELS FUNCTION ID07 Chip version Note 1. X = reserved. 17.2.2 SUBADDRESS 02 V1 V2 0 0 ID06 0 0 ID05 0 1 ID04 1 0 ID03 X X ID02 X X ID01 X X ID00 X X
Table 12 Analog control 1 SA02; note 1 FUNCTION(2) Mode 0 : CVBS (automatic gain) Mode 1 : CVBS (automatic gain) Mode 2 : CVBS (automatic gain) Mode 3 : CVBS (automatic gain) Mode 4 : Y (automatic gain) + C (gain channel 2 fixed to GAI2 level) Mode 5 : Y (automatic gain) + C (gain channel 2 fixed to GAI2 level) Mode 6 : Y (automatic gain) + C (gain channel 2 adapted to Y gain) Mode 7 : Y (automatic gain) + C (gain channel 2 adapted to Y gain) Notes 1. Mode select (see Figs 33 to 40). 2. For modes 0 to 3 use BYPS(SA09,D7) = 0 (chrominance trap active), for modes 4 to 7 use BYPS = 1 (chrominance trap bypassed). Table 13 Analog control 1 SA 02, D5 to D3 (see Fig.14) CONTROL BITS D5 TO D3 DECIMAL VALUE 0.... ....7 UPDATE HYSTERESIS FOR 9-BIT GAIN GUDL 2 off 7 LSB 0 1 GUDL 1 0 1 GUDL 0 0 1 CONTROL BITS D2 TO D0 MODE 2 0 0 0 0 1 1 1 1 MODE 1 0 0 1 1 0 0 1 1 MODE 0 0 1 0 1 0 1 0 1
1998 May 15
43
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
Table 14 Analog control
SAA7111A
CONTROL BITS D7 AND D6 ANALOG FUNCTION SELECT FUSE FUSE 1 Amplifier plus anti-alias filter bypassed Amplifier active Amplifier plus anti-alias filter active 0 0 1 1 FUSE 0 0 1 0 1
AI22 handbook, halfpage AI21
AD2
AI22 handbook, halfpage CHROMA AI21
AD2
CHROMA
AI12 AI11
AD1
LUMA
MGC637
AI12 AI11
AD1
LUMA
MGC638
Fig.33 Mode 0; CVBS (automatic gain).
Fig.34 Mode 1; CVBS (automatic gain).
AI22 handbook, halfpage AI21
AD2
AI22 handbook, halfpage CHROMA AI21
AD2
CHROMA
AI12 AI11
AD1
LUMA
MGC639
AI12 AI11
AD1
LUMA
MGC640
Fig.35 Mode 2; CVBS (automatic gain).
Fig.36 Mode 3; CVBS (automatic gain).
AI22 handbook, halfpage AI21
AD2
AI22 handbook, halfpage CHROMA AI21
AD2
CHROMA
AI12 AI11
AD1
LUMA
MGC641
AI12 AI11
AD1
LUMA
MGC642
Fig.37 Mode 4 Y (automatic gain) + C (gain channel 2 fixed to GAI2 level).
Fig.38 Mode 5 Y (automatic gain) + C (gain channel 2 fixed to GAI2 level).
1998 May 15
44
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
AI22 handbook, halfpage AI21
AD2
AI22 handbook, halfpage CHROMA AI21
AD2
CHROMA
AI12 AI11
AD1
LUMA
MGC643
AI12 AI11
AD1
LUMA
MGC644
Fig.39 Mode 6 Y (automatic gain) + C (gain channel 2 adapted to Y gain).
Fig.40 Mode 7 Y (automatic gain) + C (gain channel 2 adapted to Y gain).
17.2.3
SUBADDRESS 03
Table 15 Analog control 2 (AICO2) SA03 FUNCTION Static gain control channel 1 (GAI18) (see SA04) Sign bit of gain control Static gain control channel 2 (GAI28) (see SA05) Sign bit of gain control Gain control fix (GAFIX) Automatic gain controlled by MODE 1 and MODE 0 Gain control is user programmable via GAI1 + GAI2 Automatic gain control integration (HOLDG) AGC active AGC integration hold (freeze) White peak off (WPOFF) White peak control active White peak off Vertical blanking select (VBSL) Long vertical blanking Short vertical blanking HL not reference select (HLNRS) Normal clamping by HL not Reference select by HL not HLNRS HLNRS 0 1 D6 D6 VBSL VBSL 0 1 D5 D5 WPOFF WPOFF 0 1 D4 D4 HOLDG HOLDG 0 1 D3 D3 GAFIX GAFIX 0 1 D2 D2 GAI28 see Table 17 D1 GAI18 see Table 16 D0 BIT NAME LOGIC LEVEL CONTROL BIT
1998 May 15
45
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
17.2.4 SUBADDRESS 04
SAA7111A
Table 16 Gain control analog (AIC03); static gain control channel 1 GAI1 SA 04, D7 to D0 DECIMAL VALUE 0.... ....255 256.... ....511 17.2.5 GAIN (dB) -5.98 0 0 5.98 SIGN BIT GAI18 0 0 1 1 GAI17 0 1 0 1 GAI16 0 1 0 1 CONTROL BITS D7 TO D0 GAI15 0 1 0 1 GAI14 0 1 0 1 GAI13 0 1 0 1 GAI12 0 1 0 1 GAI11 0 1 0 1 GAI10 0 1 0 1
SUBADDRESS 05
Table 17 Gain control analog (AIC04); static gain control channel 2 GAI2 SA 05, D7 to D0 DECIMAL VALUE 0.... ....255 256.... ....511 17.2.6 GAIN (dB) -5.98 0 0 5.98 SIGN BIT (SA 03, D1) GAI28 0 0 1 1 GAI27 0 1 0 1 GAI26 0 1 0 1 CONTROL BITS D7 to D0 GAI25 0 1 0 1 GAI24 0 1 0 1 GAI23 0 1 0 1 GAI22 0 1 0 1 GAI21 0 1 0 1 GAI20 0 1 0 1
SUBADDRESS 06
Table 18 Horizontal sync begin SA 06, D7 to D0 DELAY TIME (STEP SIZE = 8/LLC) -128...-108 -107... ...108 (50Hz) ...107 (60Hz) 109...127 (50Hz) 108...127 (60Hz) 1 0 0 0 1 1 CONTROL BITS D7 to D0 HSB7 HSB6 HSB5 0 1 1 HSB4 1 0 0 HSB3 0 1 1 HSB2 1 1 0 HSB1 0 0 1 HSB0 1 0 1
forbidden (outside available central counter range)
forbidden (outside available central counter range)
1998 May 15
46
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
17.2.7 SUBADDRESS 07
SAA7111A
Table 19 Horizontal sync stop SA 07, D7 to D0 DELAY TIME (STEP SIZE = 8/LLC) -128...-108 -107... ...108 (50Hz) ...107 (60Hz) 109...127 (50Hz) 108...127 (60Hz) 17.2.8 SUBADDRESS 08 1 0 0 0 1 1 CONTROL BITS D7 to D0 HSS7 HSS6 HSS5 0 1 1 HSS4 1 0 0 HSS3 0 1 1 HSS2 1 1 0 HSS1 0 0 1 HSS0 1 0 1
forbidden (outside available central counter range)
forbidden (outside available central counter range)
Table 20 Sync control SA 08, D7 to D5, D3 to D0 FUNCTION Vertical noise reduction (VNOI) Normal mode Searching mode Free running mode Vertical noise reduction bypassed Horizontal PLL (HPLL) PLL closed PLL open, horizontal frequency fixed TV/VTR mode select (VTRC) TV mode (recommended for poor quality TV signals only) VTR mode (recommended as default setting) Extended loop filter (EXFIL) Word width of the loop filter (LF2) amplification = 16-bit Word width of the loop filter (LF2) amplification = 14-bit Field selection (FSEL) 50 Hz, 625 lines 60 Hz, 525 lines Automatic field detection (AUFD) Field state directly controlled via FSEL Automatic field detection AUFD AUFD 0 1 D7 D7 FSEL FSEL 0 1 D6 D6 EXFIL EXFIL 0 1 D5 D5 VTRC VTRC 0 1 D3 D3 HPLL HPLL 0 1 D2 D2 VNOI1 VNOI0 VNOI1 VNOI0 VNOI1 VNOI0 VNOI1 VNOI0 0 0 0 1 1 0 1 1 D1 D0 D1 D0 D1 D0 D1 D0 BIT NAME LOGIC LEVEL CONTROL BIT
1998 May 15
47
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
17.2.9 SUBADDRESS 09
SAA7111A
Table 21 Luminance control SA 09, D7 to D0 FUNCTION Aperture factor (APER) Aperture factor = 0 Aperture factor = 0.25 Aperture factor = 0.5 Aperture factor = 1.0 Update time interval for AGC value (UPTCV) Horizontal update (once per line) Vertical update (once per field) Vertical blanking luminance bypass (VBLB) Active luminance processing Luminance bypass during vertical blanking Aperture band pass (centre frequency) (BPSS) Centre frequency = 4.1 MHz Centre frequency = 3.8 MHz; note 1 Centre frequency = 2.6 MHz; note 1 Centre frequency = 2.9 MHz; note 1 Prefilter active (PREF) Bypassed Active Chrominance trap bypass (BYPS) Chrominance trap active; default for CVBS mode Chrominance trap bypassed; default for S-Video mode Note 1. Not to be used with bypassed chrominance trap. BYPS BYPS 0 1 D7 D7 PREF PREF 0 1 D6 D6 BPSS1 BPSS0 BPSS1 BPSS0 BPSS1 BPSS0 BPSS1 BPSS0 0 0 0 1 1 0 1 1 D5 D4 D5 D4 D5 D4 D5 D4 VBLB VBLB 0 1 D3 D3 UPTCV UPTCV 0 1 D2 D2 APER1 APER0 APER1 APER0 APER1 APER0 APER1 APER0 0 0 0 1 1 0 1 1 D1 D0 D1 D0 D1 D0 D1 D0 BIT NAME LOGIC LEVEL CONTROL BIT
1998 May 15
48
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
17.2.10 SUBADDRESS 0A Table 22 Luminance brightness control BRIG7 to BRIG0 SA 0A CONTROL BITS D7 to D0 OFFSET BRIG7 255 (bright) 128 (CCIR level) 0 (dark) 17.2.11 SUBADDRESS 0B Table 23 Luminance contrast control CONT7 to CONT0 SA 0B CONTROL BITS D7 to D0 GAIN CONT7 1.999 (maximum) 1.109 (CCIR level) 1.0 0 (luminance off) -1 (inverse luminance) -2 (inverse luminance) 17.2.12 SUBADDRESS 0C Table 24 Chrominance saturation control SATN7 to SATN0 SA 0C CONTROL BITS D7 to D0 GAIN SATN7 1.999 (maximum) 1.0 (CCIR level) 0 (colour off) -1 (inverse chrominance) -2 (inverse chrominance) 17.2.13 SUBADDRESS 0D Table 25 Chrominance hue control HUEC7 to HUEC0 SA 0D CONTROL BITS D7 to D0 HUE PHASE (DEG) HUEC7 +178.6.... ....0.... ....-180 0 0 1 HUEC6 1 0 0 HUEC5 1 0 0 HUEC4 1 0 0 HUEC3 1 0 0 HUEC2 1 0 0 0 0 0 1 1 SATN6 1 1 0 1 0 SATN5 1 0 0 0 0 SATN4 1 0 0 0 0 SATN3 1 0 0 0 0 SATN2 1 0 0 0 0 0 0 0 0 1 1 CONT6 1 1 1 0 1 0 CONT5 1 0 0 0 0 0 CONT4 1 0 0 0 0 0 CONT3 1 0 0 0 0 0 CONT2 1 1 0 0 0 0 1 1 0 BRIG6 1 0 0 BRIG5 1 0 0 BRIG4 1 0 0 BRIG3 1 0 0 BRIG2 1 0 0
SAA7111A
BRIG1 1 0 0
BRIG0 1 0 0
CONT1 1 1 0 0 0 0
CONT0 1 1 0 0 0 0
SATN1 1 0 0 0 0
SATN0 1 0 0 0 0
HUEC1 1 0 0
HUEC0 1 0 0
1998 May 15
49
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
17.2.14 SUBADDRESS 0E Table 26 Chrominance control SA 0E FUNCTION Chroma bandwidth (CHBW0 and CHBW1) Small bandwidth ( 620 kHz) Nominal bandwidth ( 800 kHz) Medium bandwidth ( 920 kHz) Wide bandwidth ( 1000 kHz) Fast colour time constant (FCTC) Nominal time constant Fast time constant Disable chrominance comb filter (DCCF) Chrominance comb filter on (during VREF = 1) (see Figs 24 and 25) Chrominance comb filter off Colour standard control automatic switching between PAL BGHI and NTSC M (NTSC-Japan with special level adjustment; luminance brightness subaddress 0A = 95H, luminance contrast subaddress 0BH = 48H) Colour standard control automatic switching between NTSC 4.43 (50 Hz) and PAL 4.43 (60 Hz) Colour standard control automatic switching between PAL N and NTSC 4.43 (60 Hz) Colour standard control automatic switching between NTSC N and PAL M Colour standard control automatic switching between SECAM and PAL 4.43 (60 Hz) Clear DTO (CDTO) Disabled Every time CDTO is set, the internal subcarrier DTO phase is reset to 0 and the RTCO output generates a logic 0 at time slot 68 (see RTCO description Fig.20). So an identical subcarrier phase can be generated by an external device (e.g. an encoder). CDTO CDTO 0 1 DCCF DCCF CSTD2 CSTD1 CSTD0 CSTD2 CSTD1 CSTD0 CSTD2 CSTD1 CSTD0 CSTD2 CSTD1 CSTD0 CSTD2 CSTD1 CSTD0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 FCTC FCTC 0 1 CHBW1 CHBW0 CHBW1 CHBW0 CHBW1 CHBW0 CHBW1 CHBW0 0 0 0 1 1 0 1 1 BIT NAME
SAA7111A
LOGIC LEVEL
CONTROL BIT
D1 D0 D1 D0 D1 D0 D1 D0 D2 D2 D3 D3 D6 D5 D4 D6 D5 D4 D6 D5 D4 D6 D5 D4 D6 D5 D4 D7 D7
Colour standard (CSTD0 to CSTD2); logic levels 100, 110 and 111 are reserved, do not use
1998 May 15
50
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
17.2.15 SUBADDRESS 10 Table 27 Format/delay control SA 10 LUMINANCE DELAY COMPENSATION (STEPS IN 2/LLC) -4... ...0... ...3 CONTROL BITS D2 to D0 YDEL2 1 0 0 YDEL1 0 0 1
SAA7111A
YDEL0 0 0 1
Table 28 VREF pulse position and length VRLN SA 10 (D3) VREF at 60 Hz 525 LINES(1) VRLN 0 Length Line number Field Field Notes 1. Additional VREF positions can be achieved via I2C-bus bits VCTR1 and VCTR0 (see Fig.9). 2. The numbers given in parenthesis refer to CCIR line counting. Table 29 Fine position of HS HDEL0 and HDEL1 SA 10 FINE POSITION OF HS WITH A STEP SIZE OF 2/LLC 0 1 2 3 Table 30 Output format selection OFTS0 and OFTS1 SA 10 CONTROL BITS D7 and D6 FORMATS OFTS1 RGB (5, 6 and 5), RGB (8, 8 and 8) (dependent on control bit RGB888); see Table 32 YUV 422 16 bits YUV 411 12 bits YUV CCIR-656 8 bits 0 OFTS0 0 CONTROL BITS D5 and D4 HDEL1 0 0 1 1 HDEL0 0 1 0 1 1(2) 2(2) first 19 (22) 282 (285) 240 last 258 (261) 521 (524) first 18 (21) 281 (284) 1 242 last 259 (262) 522 (525) first 24 337 0 286 last 309 622 first 23 336 1 288 last 310 623 VREF at 50 Hz 625 LINES(1)
0 1 1
1 0 1
1998 May 15
51
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
17.2.16 SUBADDRESS 11 Table 31 Output control 1 SA 11 FUNCTION Colour on (COLO) Automatic colour killer Colour forced on Decoder VIP bypassed (VIPB) DMSD data to YUV output ADC data to YUV output; dependent on mode settings Output enable horizontal/vertical sync (OEHV) HS, HREF, VREF and VS high-impedance inputs Outputs HS, HREF, VREF and VS active Output enable YUV data (OEYC) VPO-bus high-impedance inputs Output VPO-bus active Inverse composite blank (COMPO) VREF is vertical reference VREF is inverse composite blank FEI control (FECO) FEI sampling at CREF = LOW (SAA7110 compatible); (see Fig.19) FEI sampling at CREF = HIGH Compatibility to SAA7199 (CM99) Default value To be set if SAA7199 (digital encoder) is used for re-encoding in conjunction with RTCO General purpose switch (GPSW) Switches directly pin 64 GPSW GPSW GPSW 0 1 CM99 CM99 0 1 FECO FECO 0 1 COMPO COMPO 0 1 OEYC OEYC 0 1 OEHV OEHV 0 1 VIPB VIPB 0 1 COLO COLO 0 1 BIT NAME LOGIC LEVEL
SAA7111A
CONTROL BIT
D0 D0
D1 D1
D2 D2
D3 D3
D4 D4
D5 D5
D6 D6
D7 D7
1998 May 15
52
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
17.2.17 SUBADDRESS 12 Table 32 Output control 2 SA 12, D7 to D6, D4 to D0 FUNCTION Analog test select (AOSL) AOUT connected to internal test point 1 AOUT connected to input AD1 AOUT connected to input AD2 AOUT connected to internal test point 2 Dithering (noise shaping) control (DIT) Dithering off Dithering on RGB output format selection (RGB888) RGB (5, 6 and 5) RGB (8, 8 and 8) Chrominance interpolation filter function (CBR) Cubic interpolation (default) Linear interpolation (lower bandwidth) 3-state control VPO7 to VPO0 (TCLO) VPO7 to VPO0 depends on OEYC, FEI only (default) (see Figs 18, 19 and 22) VPO7 to VPO0 in 3-state [and OFTS (1 : 0) = 3] (see Tables 3 and 6) Real time outputs mode select (RTSE0) ODD switched to output pin 40 VL switched to output pin 40 Real time outputs mode select (RTSE1) PLIN switched to output pin 39 HL switched to output pin 39 RTSE1 RTSE1 0 1 RTSE0 RTSE0 0 1 TCLO TCLO 0 1 CBR CBR 0 1 RGB888 RGB888 0 1 DIT DIT 0 1 AOSL1 AOSL0 AOSL1 AOSL0 AOSL1 AOSL0 AOSL1 AOSL0 0 0 0 1 1 0 1 1 BIT NAME LOGIC LEVEL
SAA7111A
CONTROL BIT
D1 D0 D1 D0 D1 D0 D1 D0
D2 D2
D3 D3
D4 D4
D5 D5
D6 D6
D7 D7
1998 May 15
53
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
17.2.18 SUBADDRESS 13 Table 33 Output control 3 SA 13 FUNCTION Bypass control LOW for VPO7 to VPO0 No bypass Permanent bypass Bypass controlled by V_GATE Bypass controlled by delayed V_GATE Bypass control HIGH for VPO15 to VPO8 No bypass Permanent bypass Bypass controlled by V_GATE Bypass controlled by delayed V_GATE Clock Reference Output Control CREF is independent of VREF CREF is LOW if VREF = 0 CREF is HIGH if VREF = 0 CREF always = 1 Vertical Reference Output Control (VREF) Internal VREF VREF_CCIR Programmable V_GATE Delayed programmable V_GATE VCTR1 VCTR0 VCTR1 VCTR0 VCTR1 VCTR0 VCTR1 VCTR0 0 0 0 1 1 0 1 1 CCTR1 CCTR0 CCTR1 CCTR0 CCTR1 CCTR0 CCTR1 CCTR0 0 0 0 1 1 0 1 1 BCHI1 BCHI0 BCHI1 BCHI0 BCHI1 BCHI0 BCHI1 BCHI0 0 0 0 1 1 0 1 1 BCLO1 BCLO0 BCLO1 BCLO0 BCLO1 BCLO0 BCLO1 BCLO0 0 0 0 1 1 0 1 1 BIT NAME LOGIC LEVEL
SAA7111A
CONTROL BIT
D1 D0 D1 D0 D1 D0 D1 D0
D3 D2 D3 D2 D3 D2 D3 D2
D5 D4 D5 D4 D5 D4 D5 D4
D7 D6 D7 D6 D7 D6 D7 D6
1998 May 15
54
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in _white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ... 1998 May 15 55 Notes 1. Start of decoded data on VPO-port (end of bypassed region; start of VREF if selected by VCTR1 and VCTR0; see Figs 8 and 10). 2. Line numbers in brackets refer to CCIR line counting. Philips Semiconductors 17.2.19 SUBADDRESS 15
Enhanced Video Input Processor (EVIP)
Table 34 Start of decoded data on VPO-port SA 15; note 1 FRAME LINE(2) COUNTING 1 314 2 315 312 625 1 (4) 264 (267) 2 (5) 265 (268) 262 (265) 525 (3) ....260 1 0 0 0 0 0 1 0 1 0.... 0 0 0 0 0 0 0 0 0 262 1 0 0 0 0 0 1 1 0 ....310 1 0 0 1 1 0 1 1 1 0.... 0 0 0 0 0 0 0 0 0 MSB (SA 17, D0) VSTA8 50 Hz 1st 2nd 1st 2nd 1st 2nd 60 Hz 1st 2nd 1st 2nd 1st 2nd 312 1 VSTA7 0 VSTA6 0 VSTA5 1 CONTROL BITS D7 to D0 VSTA4 1 VSTA3 1 VSTA2 0 VSTA1 0 VSTA0 0
FIELD
DECIMA L VALUE
Product specification
SAA7111A
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in _white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ... 1998 May 15 56 NOTES 1. STOP OF DECODED DATA ON VPO-PORT (BEGIN OF BYPASSED REGION; STOP OF VREF IF SELECTED BY VCTR1 AND VCTR0; SEE FIGS 8 AND 10). 2. LINE NUMBERS IN BRACKETS REFER TO CCIR LINE COUNTING. 17.2.21 SUBADDRESS 17 Table 36 Sign bits of the VBI-data stream control FUNCTION VBI-data stream start (VSTA8); see SA 15 Sign bit VBI-data stream start VBI-data stream stop (VSTO8); see SA 16 Sign bit VBI-data stream stop VSTO8 see Table 35 D1 VSTA8 see Table 34 D0 Product specification BIT NAME LOGIC LEVEL CONTROL BIT Philips Semiconductors 17.2.20 SUBADDRESS 16
Enhanced Video Input Processor (EVIP)
TABLE 35 STOP OF DECODED DATA ON VPO-PORT SA 16; NOTE 1 FRAME LINE(2) COUNTING 1 314 2 315 312 625 1 (4) 264 (267) 2 (5) 265 (268) 262 (265) 525 (3) ....260 1 0 0 0 0 0 1 0 1 0.... 0 0 0 0 0 0 0 0 0 262 1 0 0 0 0 0 1 1 0 ....310 1 0 0 1 1 0 1 1 1 0.... 0 0 0 0 0 0 0 0 0 MSB DECIMAL (SA 17, D0) VALUE VSTO8 312 1 CONTROL BITS D7 to D0 VSTO7 0 VSTO6 0 VSTO5 1 VSTO4 1 VSTO3 1 VSTO2 0 VSTO1 0 VSTO0 0
FIELD 50 Hz 1st 2nd 1st 2nd 1st 2nd 60 Hz 1st 2nd 1st 2nd 1st 2nd
SAA7111A
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
17.2.22 SUBADDRESS 1A (READ-ONLY REGISTER) Table 37 Line-21 text slicer status SA 1A, D3 to D0 I2C-BUS STATUS BIT NAME F1RDY F1VAL F2RDY F2VAL FUNCTION new data on field 1 has been acquired (for asynchronous reading); active HIGH line-21 of field 1 carries valid data; active HIGH new data on field 2 has been acquired (for asynchronous reading); active HIGH line-21 of field 2 carries valid data; active HIGH
SAA7111A
STATUS BIT D0 D1 D2 D3
17.2.23 SUBADDRESS 1B (READ-ONLY REGISTER) Table 38 First decoded data byte of the text slicer SA 1B I2C-BUS TEXT DATA BITS BYTE1 (6 to 0) P1 data bit 6 to 0 of first data byte parity error flag bit; bit goes HIGH when a parity error has occurred FUNCTION DATA BITS D6 to D0 D7
17.2.24 SUBADDRESS 1C (READ-ONLY REGISTER) Table 39 Second decoded data byte of the text slicer SA 1C I2C-BUS TEXT DATA BITS BYTE2 (6 to 0) P2 FUNCTION data bit 6 to 0 of second data byte parity error flag bit; bit goes HIGH when a parity error has occurred DATA BITS D6 to D0 D7
17.2.25 SUBADDRESS 1F (READ-ONLY REGISTER) Table 40 Status byte SA 1F I2C-BUS STATUS BIT NAME CODE SLTCA WIPA GLIMB GLIMT FIDT HLCK STTC FUNCTION colour signal in accordance with selected standard has been detected; active HIGH slow time constant active in WIPA-mode; active HIGH white peak loop is activated; active HIGH gain value for active luminance channel is limited [min (bottom)]; active HIGH gain value for active luminance channel is limited [max (top)]; active HIGH identification bit for detected field frequency; LOW = 50 Hz, HIGH = 60 Hz status bit for locked horizontal frequency; LOW = locked, HIGH = unlocked status bit for horizontal phase loop; LOW = TV time-constant, HIGH = VTR time-constant STATUS BIT D0 D1 D2 D3 D4 D5 D6 D7
1998 May 15
57
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
18 FILTER CURVES 18.1 Anti-alias filter curve
SAA7111A
MGD138
handbook, full pagewidth
6
V (dB)
0 -6 -12 -18 -24 -30 -36 -42
0
2
4
6
8
10
12
f (MHz)
14
Fig.41 Anti-alias filter.
18.2
TUF-block filter curve
V handbook, full pagewidth (dB) 0 -6 -12 -18 -24 -30 -36 -42 -48 -54 0 2 4 6 8 10 12 f (MHz) 14
6
MGG067
Fig.42 Interpolation filter for the upsampled CVBS-signal.
1998 May 15
58
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
18.3 Luminance filter curves
SAA7111A
MGD139
handbook, full pagewidth
18
VY (dB) 6 (1) (2) (4) (3)
-6
(1) (2) (4) (3)
-18
-30
0
2
4
6
(1) = 43H; (2) = 53H; (3) = 63H; (4) = 73H.
fY (MHz)
8
Fig.43 Luminance control SA 09H, 4.43 MHz Trap/CVBS mode, prefilter on, different aperture bandpass centre frequencies.
MGD140
handbook, full pagewidth
18
VY (dB) 6 (1) (2) (3) (4) -6 (4) (3) (2) (1)
-18
-30
0
2
4
6
fY (MHz)
8
(1) = 40H; (2) = 41H; (3) = 42H; (4) = 43H.
Fig.44 Luminance control SA 09H, 4.43 MHz Trap/CVBS mode, prefilter on, different aperture factors.
1998 May 15
59
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
MGD141
handbook, full pagewidth
18
VY (dB) 6 (1) (2) (4) (3) -6 (1) (2) (4) (3) -18
-30
0
2
4
6
fY (MHz)
8
(1) = 03H; (2) = 13H; (3) = 23H; (4) = 33H.
Fig.45 Luminance control SA 09H, 4.43 MHz Trap/CVBS mode, prefilter off, different aperture band-pass centre frequencies.
MGD142
handbook, full pagewidth
18
VY (dB) 6
(1) (2) (3) (4)
-6
-18
-30
0
2
4
6
fY (MHz)
8
(1) = C0H; (2) = C1H; (3) = C2H; (4) = C3H.
Fig.46 Luminance control SA 09H, Y/C mode, prefilter on, different aperture factors.
1998 May 15
60
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
MGD143
handbook, full pagewidth
18
VY (dB) 6 (1) (2) (3) (4)
-6
-18
-30
0
2
4
6
fY (MHz)
8
(1) = 80H; (2) = 81H; (3) = 82H; (4) = 83H.
Fig.47 Luminance control SA 09H, Y/C mode, prefilter off, different aperture factors.
MGD144
handbook, full pagewidth
18
VY (dB) 6 (1) (2) (4) (3)
(1) (2) (4) (3)
-6
-18
-30
0
2
4
6
f
8 Y (MHz)
(1) = 43H; (2) = 53H; (3) = 63H; (4) = 73H.
Fig.48 Luminance control SA 09H, 3.58 MHz Trap/CVBS mode, prefilter on, different aperture band-pass centre frequencies.
1998 May 15
61
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
MGD145
handbook, full pagewidth
18
VY (dB) 6 (1) (2) (3) (4) -6 (4) (3) (2) (1)
-18
-30
0
2
4
6
fY (MHz)
8
(1) = 40H; (2) = 41H; (3) = 42H; (4) = 43H.
Fig.49 Luminance control SA 09H, 3.58 MHz Trap/CVBS mode, prefilter on, different aperture factors.
MGD146
handbook, full pagewidth
18
VY (dB) 6 (1) (2) (4) (3)
-6
(1) (2) (4) (3)
-18
-30
0
2
4
6
f
8 Y (MHz)
(1) = 03H; (2) = 13H; (3) = 23H; (4) = 33H.
Fig.50 Luminance control SA 09H, 3.58 MHz Trap/CVBS mode, prefilter off, different aperture band-pass centre frequencies.
1998 May 15
62
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
18.4 Chrominance filter curves
SAA7111A
MGD147
handbook, full pagewidth V
6 0
(dB)
-6 -12 -18 -24 -30 -36 -42 -48 -54 (4) (1) (3) (2) (1) (2) (3) (4)
0
0.54
1.08
1.62
2,16
f(MHz)
2.7
(1) Transfer characteristics of the chrominance low-pass dependent on CHBW[1 : 0] settings. CHBW [1 : 0] = 00; (2) CHBW [1 : 0] = 01; (3) CHBW [1 : 0] = 10; (4) CHBW [1 : 0] = 11.
Fig.51 Chrominance filter.
19 I2C-BUS START SET-UP * The given values force the following behaviour of the SAA7111A: - The analog input AI11 expects a signal in CVBS format; analog anti-alias filter active - Automatic field detection - YUV 4 : 2 : 2 16-bit output format enabled - Outputs HS, HREF, VREF and VS active - Contrast, brightness and saturation control in accordance with CCIR standards - Chrominance processing with nominal bandwidth (800 kHz).
1998 May 15
63
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
Table 41 I2C-bus start set-up values SUB (HEX) 00 01 02 FUNCTION chip version reserved analog input control 1 NAME(1) ID07 to ID00; see Table 9
SAA7111A
VALUES (BIN) 7 6 5 4 3 2 1 0 read only 0000 0000
(HEX) START 00 C0 33 00 00 EB E0 88 01 80 47 40 00 01 00 40 1C 00 00 00 00 00 00 00
000 0 FUSE1 and FUSE0, GUDL2 to GUDL0, 110 0 MODE2 to MODE0 03 analog input control 2 X, HLNRS, VBSL, WPOFF, HOLDG, 00100011 GAFIX, GAI28 and GAI18 04 analog input control 3 GAI17 to GAI10 00000000 05 analog input control 4 GAI27 to GAI20 00000000 06 horizontal sync start HSB7 to HSB0 11101011 07 horizontal sync stop HSS7 to HSS0 11100000 08 sync control AUFD, FSEL, EXFIL, X, VTRC, HPLL, 10001000 VNOI1 and VNOI0 09 luminance control BYPS, PREF, BPSS1 and BPSS0, VBLB, 0 0 0 0 0 0 0 1 UPTCV, APER1 and APER0 0A luminance brightness BRIG7 to BRIG0 10000000 0B luminance contrast CONT7 to CONT0 01000111 0C chrominance saturation SATN7 to SATN0 01000000 0D chroma hue control HUEC7 to HUEC0 00000000 0E chrominance control CDTO, CSTD2 to CSTD0, DCCF, FCTC, 0 0 0 0 0 0 0 1 CHBW1 and CHBW0 0F reserved 00000000 10 format/delay control OFTS1 and OFTS0, HDEL1 and HDEL0, 0 1 0 0 0 0 0 0 VRLN, YDEL2 to YDEL0 11 output control 1 GPSW, CM99, FECO, COMPO, OEYC, 00011100 OEHV, VIPB, and COLO 12 output control 2 RTSE1 and RTSE0, TCLO, CBR, 00000001 RGB888 DIT, AOSL1 and AOSL0 13 output control 3 CCTR1 and CCTR0, BCHI1 and BCHI0, 0 0 0 0 0 0 0 0 BCLO1 and BCLO0, VCTR1 and VCTR0 14 reserved 00000000 15 VBI-data stream start VSTA7 to VSTA0 00000000 16 VBI-data stream stop VSTO7 to VSTO0 00000000 17 MSBs for VBI control X, X, X, X, X, X, VSTO8, and VSTA8 00000000 18-19 reserved 00000000 1A text slicer status 0, 0, 0, 0, F2VAL, F2RDY, read only register F1VAL, and F1RDY 1B decoded bytes of the P1, BYTE1 (6 to 0) text slicer 1C P2, BYTE2 (6 to 0) 1D-1E reserved 00000000 1F status byte STTC, HLCK, FIDT, GLIMT, GLIMB, read only register WIPA, SLTCA and CODE Note 1. All X values must be set to LOW. 1998 May 15 64
00
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
20 PACKAGE OUTLINES LQFP64: plastic low profile quad flat package; 64 leads; body 10 x 10 x 1.4 mm
SAA7111A
SOT314-2
c
y X A 48 49 33 32 ZE
e E HE wM bp 64 1 pin 1 index 16 ZD bp D HD wM B vM B vM A 17 detail X L Lp A A2 A1 (A 3)
e
0
2.5 scale
5 mm
DIMENSIONS (mm are the original dimensions) UNIT mm A max. 1.60 A1 0.20 0.05 A2 1.45 1.35 A3 0.25 bp 0.27 0.17 c 0.18 0.12 D (1) 10.1 9.9 E (1) 10.1 9.9 e 0.5 HD HE L 1.0 Lp 0.75 0.45 v 0.2 w 0.12 y 0.1 Z D (1) Z E (1) 1.45 1.05 1.45 1.05 7 0o
o
12.15 12.15 11.85 11.85
Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. OUTLINE VERSION SOT314-2 REFERENCES IEC JEDEC EIAJ EUROPEAN PROJECTION
ISSUE DATE 95-12-19 97-08-01
1998 May 15
65
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
QFP64: plastic quad flat package; 64 leads (lead length 1.6 mm); body 14 x 14 x 2.7 mm
SOT393-1
c
y X
A 48 49 33 32 ZE
e E HE wM pin 1 index 64 1 bp D HD wM ZD B vM B 16 vMA 17 bp Lp L detail X A A2 A1 (A 3)
e
0
5 scale
10 mm
DIMENSIONS (mm are the original dimensions) UNIT mm A max. 3.00 A1 0.25 0.10 A2 2.75 2.55 A3 0.25 bp 0.45 0.30 c 0.23 0.13 D (1) 14.1 13.9 E (1) 14.1 13.9 e 0.8 HD HE L Lp 1.03 0.73 v 0.16 w 0.16 y 0.10 Z D (1) Z E (1) 1.2 0.8 1.2 0.8 7 0o
o
17.45 17.45 1.60 16.95 16.95
Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. OUTLINE VERSION SOT393-1 REFERENCES IEC JEDEC MS-022 EIAJ EUROPEAN PROJECTION
ISSUE DATE 96-05-21 97-08-04
1998 May 15
66
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
21 SOLDERING 21.1 Introduction
SAA7111A
If wave soldering cannot be avoided, for LQFP and QFP packages with a pitch (e) larger than 0.5 mm, the following conditions must be observed: * A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used. * The footprint must be at an angle of 45 to the board direction and must incorporate solder thieves downstream and at the side corners. During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured. Maximum permissible solder temperature is 260 C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 C within 6 seconds. Typical dwell time is 4 seconds at 250 C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications. 21.4 Repairing soldered joints
There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used. This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398 652 90011). 21.2 Reflow soldering
Reflow soldering techniques are suitable for all LQFP and QFP packages. The choice of heating method may be influenced by larger plastic QFP packages (44 leads, or more). If infrared or vapour phase heating is used and the large packages are not absolutely dry (less than 0.1% moisture content by weight), vaporization of the small amount of moisture in them can cause cracking of the plastic body. For more information, refer to the Drypack chapter in our "Quality Reference Handbook" (order code 9397 750 00192). Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 50 and 300 seconds depending on heating method. Typical reflow peak temperatures range from 215 to 250 C. 21.3 Wave soldering
Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 C.
Wave soldering is not recommended for LQFP and QFP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices. CAUTION Wave soldering is NOT applicable for all LQFP and QFP packages with a pitch (e) equal or less than 0.5 mm.
1998 May 15
67
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
22 DEFINITIONS Data sheet status Objective specification Preliminary specification Product specification Limiting values
SAA7111A
This data sheet contains target or goal specifications for product development. This data sheet contains preliminary data; supplementary data may be published later. This data sheet contains final product specifications.
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Where application information is given, it is advisory and does not form part of the specification. 23 LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. 24 PURCHASE OF PHILIPS I2C COMPONENTS
Purchase of Philips I2C components conveys a license under the Philips' I2C patent to use the components in the I2C system provided the system conforms to the I2C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.
1998 May 15
68
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
NOTES
SAA7111A
1998 May 15
69
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
NOTES
SAA7111A
1998 May 15
70
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
NOTES
SAA7111A
1998 May 15
71
Philips Semiconductors - a worldwide company
Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010, Fax. +43 160 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773 Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 32 88 2636, Fax. +45 31 57 0044 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615800, Fax. +358 9 61580920 France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427 Germany: Hammerbrookstrae 69, D-20097 HAMBURG, Tel. +49 40 23 53 60, Fax. +49 40 23 536 300 Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS, Tel. +30 1 4894 339/239, Fax. +30 1 4814 240 Hungary: see Austria India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966 Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080 Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381 Middle East: see Italy Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341 Pakistan: see Singapore Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327 Portugal: see Spain Romania: see Italy Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 755 6918, Fax. +7 095 755 6919 Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762, Tel. +65 350 2538, Fax. +65 251 6500 Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 5494 South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SAO PAULO, SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 821 2382 Spain: Balmes 22, 08007 BARCELONA, Tel. +34 93 301 6312, Fax. +34 93 301 4107 Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 5985 2000, Fax. +46 8 5985 2745 Switzerland: Allmendstrasse 140, CH-8027 ZURICH, Tel. +41 1 488 2741 Fax. +41 1 488 3263 Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793 Turkey: Talatpasa Cad. No. 5, 80640 GULTEPE/ISTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461 United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381 Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 625 344, Fax.+381 11 635 777 Internet: http://www.semiconductors.philips.com
For all other countries apply to: Philips Semiconductors, International Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825 (c) Philips Electronics N.V. 1998
SCA60
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
655102/1200/04/pp72
Date of release: 1998 May 15
Document order number:
9397 750 03118


▲Up To Search▲   

 
Price & Availability of SAA7111AH

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X